File size: 2,173 Bytes
982c0a9
2d82919
066b6ca
dafb164
 
2d82919
 
 
066b6ca
2d82919
4f89dcc
2d82919
 
 
4f89dcc
2d82919
ec1e977
49c5d12
4f89dcc
2d82919
441eac7
 
 
 
 
 
4f89dcc
 
441eac7
 
 
 
a6523f2
441eac7
 
6cd314d
441eac7
 
 
2d82919
 
 
 
 
5ba8853
 
2d82919
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
language: en
license: apache-2.0
datasets:
- ESGBERT/environmental_2k
tags:
- ESG
- environmental
---

# Model Card for EnvRoBERTa-environmental

## Model Description

Based on [this paper](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4622514), this is the EnvRoBERTa-environmental language model. A language model that is trained to better classify environmental texts in the ESG domain.

*Note: We generally recommend choosing the [EnvironmentalBERT-environmental](https://huggingface.co/ESGBERT/EnvironmentalBERT-environmental) model since it is quicker, less resource-intensive and only marginally worse in performance.*

Using the [EnvRoBERTa-base](https://huggingface.co/ESGBERT/EnvRoBERTa-base) model as a starting point, the EnvRoBERTa-environmental Language Model is additionally fine-trained on a 2k environmental dataset to detect environmental text samples.

## How to Get Started With the Model
You can use the model with a pipeline for text classification:

```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
 
tokenizer_name = "ESGBERT/EnvRoBERTa-environmental"
model_name = "ESGBERT/EnvRoBERTa-environmental"
 
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, max_len=512)
 
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer) # set device=0 to use GPU
 
# See https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline
print(pipe("Scope 1 emissions are reported here on a like-for-like basis against the 2013 baseline and exclude emissions from additional vehicles used during repairs.", padding=True, truncation=True))
```

## More details can be found in the paper

```bibtex
@article{Schimanski23ESGBERT,
    title={{Bridiging the Gap in ESG Measurement: Using NLP to Quantify Environmental, Social, and Governance Communication}},
    author={Tobias Schimanski and Andrin Reding and Nico Reding and Julia Bingler and Mathias Kraus and Markus Leippold},
    year={2023},
    journal={Available on SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4622514},
}
```