File size: 1,934 Bytes
cca912e
fc0e85d
cca912e
5bb4e94
cca912e
 
ce2455b
cca912e
 
 
 
 
fc0e85d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca912e
 
 
 
 
 
 
fc0e85d
cca912e
fc0e85d
 
 
 
 
cca912e
 
 
f8f191b
cca912e
 
 
f8f191b
cca912e
 
 
f8f191b
cca912e
 
 
 
 
 
 
fc0e85d
cca912e
 
 
 
fc0e85d
cca912e
 
 
 
 
fc0e85d
5ad0932
 
cca912e
 
5ad0932
cca912e
 
ce2455b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- source_data_nlp
metrics:
- precision
- recall
- f1
model-index:
- name: sd-panelization-v2
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: source_data_nlp
      type: source_data_nlp
      args: PANELIZATION
    metrics:
    - name: Precision
      type: precision
      value: 0.9134245120169964
    - name: Recall
      type: recall
      value: 0.9494824016563147
    - name: F1
      type: f1
      value: 0.9311044937736871
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sd-panelization-v2

This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on the source_data_nlp dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0050
- Accuracy Score: 0.9982
- Precision: 0.9134
- Recall: 0.9495
- F1: 0.9311

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 256
- seed: 42
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 1.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
| 0.0048        | 1.0   | 431  | 0.0050          | 0.9982         | 0.9134    | 0.9495 | 0.9311 |


### Framework versions

- Transformers 4.20.0
- Pytorch 1.11.0a0+bfe5ad2
- Datasets 1.17.0
- Tokenizers 0.12.1