File size: 1,934 Bytes
cca912e fc0e85d cca912e 5bb4e94 cca912e ce2455b cca912e fc0e85d cca912e fc0e85d cca912e fc0e85d cca912e f8f191b cca912e f8f191b cca912e f8f191b cca912e fc0e85d cca912e fc0e85d cca912e fc0e85d 5ad0932 cca912e 5ad0932 cca912e ce2455b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- source_data_nlp
metrics:
- precision
- recall
- f1
model-index:
- name: sd-panelization-v2
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: source_data_nlp
type: source_data_nlp
args: PANELIZATION
metrics:
- name: Precision
type: precision
value: 0.9134245120169964
- name: Recall
type: recall
value: 0.9494824016563147
- name: F1
type: f1
value: 0.9311044937736871
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sd-panelization-v2
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on the source_data_nlp dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0050
- Accuracy Score: 0.9982
- Precision: 0.9134
- Recall: 0.9495
- F1: 0.9311
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 256
- seed: 42
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
| 0.0048 | 1.0 | 431 | 0.0050 | 0.9982 | 0.9134 | 0.9495 | 0.9311 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0a0+bfe5ad2
- Datasets 1.17.0
- Tokenizers 0.12.1
|