File size: 3,257 Bytes
a173de9 fd77cf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: cc-by-4.0
---
!---
# ##############################################################################################
#
# This model has been uploaded to HuggingFace by https://huggingface.co/drAbreu
# The model is based on the NVIDIA checkpoint located at
# https://catalog.ngc.nvidia.com/orgs/nvidia/models/biomegatron345mcased
#
# ##############################################################################################
-->
[BioMegatron](https://arxiv.org/pdf/2010.06060.pdf) is a transformer developed by the Applied Deep Learning Research team at NVIDIA. This particular Megatron model trained on top of the Megatron-LM model, adding a PubMed corpusto the Megatron-LM corpora(Wikipedia, RealNews, OpenWebText, and CC-Stories). BioMegatron follows a similar (albeit not identical) architecture as BERT and it has 345 million parameters:
* 24 layers
* 16 attention heads with a hidden size of 1024.
More information available at [nVIDIA NGC CATALOG](https://catalog.ngc.nvidia.com/orgs/nvidia/models/biomegatron345mcased)
# Running BioMegatron in 🤗 transformers
In this implementation we have followed the commands of the [`nvidia/megatron-bert-uncased-345m`](https://huggingface.co/nvidia/megatron-bert-cased-345m) repository to make BioMegatron available in 🤗.
However, the file [`convert_megatron_bert_checkpoint.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py) needed a modification. The reason is that the Megatron model shown in [`nvidia/megatron-bert-uncased-345m`](https://huggingface.co/nvidia/megatron-bert-cased-345m) has included head layers, while the weights of the BioMegatron model that we upload to this repository do not contain a head.
We provide in the repository an alternative version of the python script in order to any user to cross-check the validity of the model replicated in this repository.
BioMegatron can be run with the standard 🤗 script for loading models. Here we show an example identical to that of [`nvidia/megatron-bert-uncased-345m`](https://huggingface.co/nvidia/megatron-bert-cased-345m).
```python
import os
import torch
from transformers import BertTokenizer, MegatronBertForMaskedLM, AutoModelForMaskedLM
checkpoint = "EMBO/BioMegatron345mCased"
# The tokenizer. Megatron was trained with standard tokenizer(s).
tokenizer = BertTokenizer.from_pretrained(checkpoint)
# Load the model from $MYDIR/nvidia/megatron-bert-uncased-345m.
model = AutoModelForMaskedLM.from_pretrained(checkpoint)
device = torch.device("cpu")
# Create inputs (from the BERT example page).
input = tokenizer("The capital of France is [MASK]", return_tensors="pt").to(device)
label = tokenizer("The capital of France is Paris", return_tensors="pt")["input_ids"].to(device)
# Run the model.
with torch.no_grad():
output = model(**input, labels=label)
print(output)
```
# Limitations
This implementation has not been fine-tuned in any task. It has only the weights of the official nVIDIA checkpoint. It needs to be trained to perform any downstream task.
# Original code
The original code for Megatron can be found here: [https://github.com/NVIDIA/Megatron-LM](https://github.com/NVIDIA/Megatron-LM).
|