File size: 2,662 Bytes
b4d58b5
 
 
 
 
 
 
 
 
 
6a03f28
 
 
 
 
b4d58b5
 
 
 
 
09e980a
b4d58b5
 
 
 
 
 
 
 
 
 
 
 
b2a4380
b4d58b5
 
 
b2a4380
 
 
 
 
 
 
b4d58b5
 
 
b2a4380
b4d58b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a03f28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: 01_ToS-BART
  results: []
datasets:
- EE21/ToS-Summaries
language:
- en
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BART-ToSSimplify

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3895
- Rouge1: 0.6186
- Rouge2: 0.4739
- Rougel: 0.5159
- Rougelsum: 0.5152
- Gen Len: 108.6354

## Model description

BART-ToSSimplify is designed to generate summaries of Terms of Service documents.

## Intended uses & limitations

Intended Uses:
- Generating simplified summaries of Terms of Service agreements.
- Automating the summarization of legal documents for quick comprehension.

Limitations:
- This model is specifically designed for the English language and cannot be applied to other languages.
- The quality of generated summaries may vary based on the complexity of the source text.

## Training and evaluation data

BART-ToSSimplify was trained on a dataset consisting of summaries of various Terms of Service agreements. The dataset was collected and preprocessed to create a training and evaluation split.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
| No log        | 1.0   | 360  | 0.3310          | 0.5585 | 0.4013 | 0.4522 | 0.4522    | 116.1105 |
| 0.2783        | 2.0   | 720  | 0.3606          | 0.5719 | 0.4078 | 0.4572 | 0.4568    | 114.6796 |
| 0.2843        | 3.0   | 1080 | 0.3829          | 0.6019 | 0.4456 | 0.4872 | 0.4875    | 110.8066 |
| 0.2843        | 4.0   | 1440 | 0.3599          | 0.6092 | 0.4604 | 0.5049 | 0.5049    | 110.884  |
| 0.1491        | 5.0   | 1800 | 0.3895          | 0.6186 | 0.4739 | 0.5159 | 0.5152    | 108.6354 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0