File size: 23,362 Bytes
c7995e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import argparse
import os
import random
import torch
import pandas as pd
import numpy as np
import time
import torch.optim as optim

from matplotlib import cm
import matplotlib.pyplot as plt
import json
from model import GFusion
import torch.nn.functional as F
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader

from torch_geometric.utils import add_self_loops
from torch.nn.functional import softmax
from torch_geometric.nn import knn_graph
import copy

torch.autograd.set_detect_anomaly(True)
from sklearn.metrics import explained_variance_score,mean_squared_error,mean_absolute_error,r2_score,precision_score,recall_score,f1_score,roc_auc_score,roc_curve, auc
from sklearn.feature_selection import r_regression
import pickle
from utils.utils import triplets,unique,pos2key
from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
import dataset

def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)

blue = lambda x: '\033[94m' + x + '\033[0m'
red = lambda x: '\033[31m' + x + '\033[0m'
green = lambda x: '\033[32m' + x + '\033[0m'
yellow = lambda x: '\033[33m' + x + '\033[0m'
greenline = lambda x: '\033[42m' + x + '\033[0m'
yellowline = lambda x: '\033[43m' + x + '\033[0m'

def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--log', type=str, default="True")
    parser.add_argument('--loadmodel', type=str, default="False")
    parser.add_argument('--split_dataset', type=str, default="False")
    parser.add_argument('--model', type=str, default="GFusion")
    
    # ablation
    parser.add_argument('--edge_rep', type=str, default="True")
    parser.add_argument('--single_high', type=str, default="False")
    parser.add_argument('--fidelity_train', type=str, default="True")
    parser.add_argument('--fidelity_low_weight', type=float, default=-1.0)
    parser.add_argument('--share', type=str, default="101")

    parser.add_argument('--dataset', type=str, default='flu')
    parser.add_argument('--manualSeed', type=str, default="False")
    parser.add_argument('--man_seed', type=int, default=12345)
    parser.add_argument('--test_per_round', type=int, default=10)
    parser.add_argument('--patience', type=int, default=30)  #scheduler
    parser.add_argument('--nepoch', type=int, default=201)
    parser.add_argument('--lr', type=float, default=1e-3)
    parser.add_argument('--activation', type=str, default='relu')#'lrelu'
    parser.add_argument('--batchSize', type=int, default=512)

    parser.add_argument('--num_neighbors', type=int, default=3)
    parser.add_argument('--regression_loss', type=str, default='l2')

    parser.add_argument('--h_ch', type=int, default=16)
    parser.add_argument('--localdepth', type=int, default=1) # mlp(distance) mlp(theta) >=1
    parser.add_argument('--num_interactions', type=int, default=1) #>=1
    parser.add_argument('--finaldepth', type=int, default=3) # mlp(concat node_attr and geo_encoding)
    
    args = parser.parse_args()
    args.log=True if args.log=="True" else False
    args.loadmodel=True if args.loadmodel=="True" else False
    args.split_dataset=True if args.split_dataset=="True" else False
    args.edge_rep=True if args.edge_rep=="True" else False
    args.single_high=True if args.single_high=="True" else False
    args.fidelity_train=True if args.fidelity_train=="True" and args.single_high is False and args.fidelity_low_weight==-1.0 else False
    args.manualSeed=True if args.manualSeed=="True" else False
    args.save_dir=os.path.join('./save/',args.dataset)
    return args

def main(args,train_Loader,val_Loader,test_Loader):
    if flag:
        return
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    measure_Pearsonr=r_regression
    criterion_l1 = torch.nn.L1Loss() #reduction='sum'
    criterion_l2 = torch.nn.MSELoss()
    criterion=criterion_l1 if args.regression_loss=='l1' else criterion_l2
    if args.model in ['GFusion']:
        def myL1(pred,true,weight=None,reduction='mean'):
            loss=(abs(pred-true))
            num=len(pred)
            if weight is not None:
                loss=[weight[i]*loss[i] for i in range(num)]
            loss=sum(loss)
            if reduction=='mean':
                loss=loss/num
            return loss
        def myL2(pred,true,weight=None,reduction='mean'):
            loss=((pred-true)**2)
            num=len(pred)
            if weight is not None:
                loss=[weight[i]*loss[i] for i in range(num)]
            loss=sum(loss)
            if reduction=='mean':
                loss=loss/num
            return loss
        criterion=myL1 if args.regression_loss=='l1' else myL2
        num_of_fidelities=len(train_graphs[0])
    
        def reweight_fidelity():
            if args.single_high:
                weighted_fidelity_weight[0]=1
                weighted_fidelity_weight[1]=0
            elif args.fidelity_low_weight!=-1.0:
                weighted_fidelity_weight[0]=1
                weighted_fidelity_weight[1]=args.fidelity_low_weight
            else:
                exped_f=[torch.exp(fidelity_weight[i]) for i in range(num_of_fidelities)]
                fsum=sum(exped_f)
                for i in range(num_of_fidelities):
                    weighted_fidelity_weight[i]=exped_f[i]/fsum
        fidelity_weight,weighted_fidelity_weight=[],[]
        if args.dataset in ['south',"north","flu"]:
            for i in range(num_of_fidelities):
                fidelity_weight+=[torch.tensor(1.0/num_of_fidelities,dtype=torch.float32).requires_grad_()]
                weighted_fidelity_weight+=[0]     
        elif args.dataset in ["syn"]:
            fidelity_weight=[torch.tensor(1,dtype=torch.float32).requires_grad_(),torch.tensor(0.0,dtype=torch.float32).requires_grad_()]
            for i in range(num_of_fidelities):
                # fidelity_weight+=[torch.tensor(1.0/num_of_fidelities,dtype=torch.float32).requires_grad_()]
                weighted_fidelity_weight+=[0]      
        reweight_fidelity()
        if args.dataset in ['south',"north"]:
            x_in=30
        elif args.dataset in ['flu']:
            x_in=0
        elif args.dataset=='syn':
            x_in=1
        else:
            raise Exception('Dataset not recognized.')
    if args.model=="GFusion":
        GFusion_model=GFusion(h_channel=args.h_ch,input_featuresize=x_in,\
                            localdepth=args.localdepth,num_interactions=args.num_interactions,finaldepth=args.finaldepth,share=args.share)
        GFusion_model.to(device)
        optimizer = torch.optim.Adam( list(GFusion_model.parameters()), lr=args.lr)
        if args.fidelity_train:
            optimizer2 = torch.optim.Adam(fidelity_weight, lr=optimizer.param_groups[0]['lr']*10)
            scheduler2 = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer2, factor=0.1, patience=args.patience, min_lr=1e-8)   
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.1, patience=args.patience, min_lr=1e-8)   

    def train(GFusion_model):
        epochloss=0
        y_hat, y_true,y_hat_logit = [], [], []        
        optimizer.zero_grad()
        if args.fidelity_train: optimizer2.zero_grad()
        if args.model=="GFusion":
            GFusion_model.train()
            for i,data in enumerate(train_Loader):
                if num_of_fidelities==2:
                    x1, pos1,edge_index1, batch1,target_index1,target1,is_source1 = data[0].x, data[0].pos,data[0].edge_index, data[0].batch,data[0].target_index,data[0].target,data[0].is_source
                    x2, pos2,edge_index2, batch2,target_index2,target2,is_source2 = data[1].x, data[1].pos,data[1].edge_index, data[1].batch,data[1].target_index,data[1].target,data[1].is_source
                    if args.dataset=='syn':
                        x1[:,1]=x1[:,1]+x1[:,2]
                        x1=x1[:,[0,1,3,4]]
                        x2[:,1]=x2[:,1]+x2[:,2]
                        x2=x2[:,[0,1,3,4]]
                    x1,pos1,target1,x2,pos2,target2=x1.to(torch.float32),pos1.to(torch.float32),target1.to(torch.float32),x2.to(torch.float32),pos2.to(torch.float32),target2.to(torch.float32)
                    x2[x2[:,0]>6666,0]=6666
                    # edge_index,_=add_self_loops(edge_index,num_nodes=x.size(0))
                    datasource=data[0].datasource
                    Y = target1
                    assert(torch.equal(target1,target2))
                    Y[Y>6666]=6666
                    x1, pos1,edge_index1, batch1, target_index1,is_source1 = x1.to(device),pos1.to(device), edge_index1.to(device), batch1.to(device),target_index1.to(device),is_source1.to(device)
                    x2, pos2,edge_index2, batch2, target_index2,is_source2 = x2.to(device),pos2.to(device),edge_index2.to(device), batch2.to(device),target_index2.to(device),is_source2.to(device)
                    """ 
                    triplets are not the same for graphs when training 
                    """
                    num_nodes1=x1.shape[0]
                    num_nodes2=x2.shape[0]
                    edge_index_2rd_1, _, _, edx_2nd_1 = triplets(edge_index1, num_nodes1)
                    edge_index_2rd_2, _, _, edx_2nd_2 = triplets(edge_index2, num_nodes2)
                    
                    pm25_1,pm25_2=GFusion_model([pos1,pos2],[edge_index1,edge_index2],[edge_index_2rd_1,edge_index_2rd_2],\
                                            [edx_2nd_1,edx_2nd_2],[batch1,batch2],[x1,x2],[is_source1,is_source2],args.edge_rep)      
                    pm25_1,pm25_2=pm25_1[target_index1],pm25_2[target_index2]

                    if args.dataset=='syn':
                        pred=((pm25_1*weighted_fidelity_weight[0]+pm25_2*weighted_fidelity_weight[1]).cpu())
                    else:
                        pred=F.relu((pm25_1*weighted_fidelity_weight[0]+pm25_2*weighted_fidelity_weight[1]).cpu())
                    
                    loss_weight= [weighted_fidelity_weight[i] for i in datasource]
                    loss1 = criterion(pred.reshape(-1, 1), Y.reshape(-1, 1),loss_weight)
                """
                record predictions
                """                 
                y_hat += list(pred.detach().numpy().reshape(-1))
                y_true += list(Y.detach().numpy().reshape(-1))                 
                loss=loss1
                loss.backward()
                epochloss+=loss
                optimizer.step()
                optimizer.zero_grad()
                if args.fidelity_train:
                    optimizer2.step()
                    optimizer2.zero_grad()
                reweight_fidelity()
        return epochloss.item()/len(train_Loader),y_hat, y_true

    def test(loader,GFusion_model,fidelity_weight):
        if not args.single_high:
            weighted_fidelity_weight=[i.detach() for i in fidelity_weight]
            exped_f=[torch.exp(fidelity_weight[i]) for i in range(num_of_fidelities)]
            fsum=sum(exped_f)
            for i in range(num_of_fidelities):
                weighted_fidelity_weight[i]=exped_f[i]/fsum
        else:
            weighted_fidelity_weight=[1,0]
        y_hat, y_true,y_hat_logit = [], [], []
        loss_total, pred_num = 0, 0
        GFusion_model.eval()
        for i,data in enumerate(loader):
            if num_of_fidelities==2:
                x1, pos1,edge_index1, batch1,target_index1,target1,is_source1 = data[0].x, data[0].pos,data[0].edge_index, data[0].batch,data[0].target_index,data[0].target,data[0].is_source
                x2, pos2,edge_index2, batch2,target_index2,target2,is_source2 = data[1].x, data[1].pos,data[1].edge_index, data[1].batch,data[1].target_index,data[1].target,data[1].is_source
                if args.dataset=='syn':
                    x1[:,1]=x1[:,1]+x1[:,2]
                    x1=x1[:,[0,1,3,4]]
                    x2[:,1]=x2[:,1]+x2[:,2]
                    x2=x2[:,[0,1,3,4]]               
                x1,pos1,target1,x2,pos2,target2=x1.to(torch.float32),pos1.to(torch.float32),target1.to(torch.float32),x2.to(torch.float32),pos2.to(torch.float32),target2.to(torch.float32)
                x2[x2[:,0]>6666,0]=6666
                # edge_index,_=add_self_loops(edge_index,num_nodes=x.size(0))
                datasource=data[0].datasource
                Y = target1
                assert(torch.equal(target1,target2))
                Y[Y>6666]=6666
                x1, pos1,edge_index1, batch1, target_index1,is_source1 = x1.to(device),pos1.to(device), edge_index1.to(device), batch1.to(device),target_index1.to(device),is_source1.to(device)
                x2, pos2,edge_index2, batch2, target_index2,is_source2 = x2.to(device),pos2.to(device),edge_index2.to(device), batch2.to(device),target_index2.to(device),is_source2.to(device)

                num_nodes1=x1.shape[0]
                num_nodes2=x2.shape[0]
                edge_index_2rd_1, num_2nd_neighbors_1, edx_1st_1, edx_2nd_1 = triplets(edge_index1, num_nodes1)
                edge_index_2rd_2, num_2nd_neighbors_2, edx_1st_2, edx_2nd_2 = triplets(edge_index2, num_nodes2)
                pm25_1,pm25_2=GFusion_model([pos1,pos2],[edge_index1,edge_index2],[edge_index_2rd_1,edge_index_2rd_2],\
                                        [edx_2nd_1,edx_2nd_2],[batch1,batch2],[x1,x2],[is_source1,is_source2],args.edge_rep)             
                pm25_1,pm25_2=pm25_1[target_index1],pm25_2[target_index2]
                with torch.no_grad(): 
                    if args.dataset=='syn':
                        pred=((pm25_1*weighted_fidelity_weight[0]+pm25_2*weighted_fidelity_weight[1]).cpu())
                    else:
                        pred=F.relu((pm25_1*weighted_fidelity_weight[0]+pm25_2*weighted_fidelity_weight[1]).cpu())
                    assert(all(datasource==0))
                    loss1 = criterion(pred.reshape(-1, 1), Y.reshape(-1, 1))*weighted_fidelity_weight[0]
            """
            record predictions
            """                 
            y_hat += list(pred.detach().numpy().reshape(-1))
            y_true += list(Y.detach().numpy().reshape(-1)) 
            pred_num += len(Y.reshape(-1, 1))               
            loss=loss1      
            loss_total += loss.detach() * len(Y.reshape(-1, 1))
        return loss_total/pred_num, y_hat, y_true
    if args.loadmodel:
        try:
            suffix='Oct31-11:50:30'
            GFusion_model.load_state_dict(torch.load(os.path.join("save",args.dataset,'model','best_GFusion_model_'+suffix+'.pth')),strict=True)
            best_GFusion_model = copy.deepcopy(GFusion_model)
        except OSError:
            pass    
    else:
        best_val_trigger = 1e3
        old_lr=1e3
        suffix="{}{}-{}:{}:{}".format(datetime.now().strftime("%h"),
                                        datetime.now().strftime("%d"),
                                        datetime.now().strftime("%H"),
                                        datetime.now().strftime("%M"),
                                        datetime.now().strftime("%S"))        
        if args.log: 
            writer = SummaryWriter(os.path.join(tensorboard_dir,suffix))
        for epoch in range(args.nepoch):
            if args.model in ['GFusion']: train_loss,y_hat, y_true=train(GFusion_model)
            if args.log: 
                writer.add_scalar('loss/Train', train_loss, epoch)
            if args.dataset in ['south',"north",'syn','flu']:          
                train_mae=mean_absolute_error(y_true, y_hat)
                train_rmse = np.sqrt(mean_squared_error(y_true, y_hat))
                if args.log:
                    writer.add_scalar('mae/Train', train_mae, epoch)
                    writer.add_scalar('rmse/Train', train_rmse, epoch)
                print(( f"epoch[{epoch:d}] train_loss : {train_loss:.3f} train_mae : {train_mae:.3f} train_rmse : {train_rmse:.3f}" ))
                if args.model in ['GFusion']: 
                    if args.fidelity_train==True:   
                        print(f"fidelity weight: {fidelity_weight[0]:.3f}, {fidelity_weight[1]:.3f}")
                    print(f"weighted_fidelity_weight: {weighted_fidelity_weight[0]:.3f}, {weighted_fidelity_weight[1]:.3f}")
            if epoch % args.test_per_round == 0:
                if args.model in ['GFusion']:
                    val_loss, yhat_val, ytrue_val = test(val_Loader,GFusion_model,fidelity_weight)
                    test_loss, yhat_test, ytrue_test = test(test_Loader,GFusion_model,fidelity_weight)
                if args.log:
                    writer.add_scalar('loss/val', val_loss, epoch)
                    writer.add_scalar('loss/test', test_loss, epoch)
                if args.dataset in ['south',"north",'syn','flu']:          
                    val_mae=mean_absolute_error(ytrue_val, yhat_val)
                    val_rmse = np.sqrt(mean_squared_error(ytrue_val, yhat_val))
                    if args.log:
                        writer.add_scalar('mae/val', val_mae, epoch)
                        writer.add_scalar('rmse/val', val_rmse, epoch)
                    print(blue( f"epoch[{epoch:d}] val_mae : {val_mae:.3f} val_rmse : {val_rmse:.3f}" ))        
                    test_mae = mean_absolute_error(ytrue_test, yhat_test)
                    test_rmse = np.sqrt(mean_squared_error(ytrue_test, yhat_test))
                    test_var=explained_variance_score(ytrue_test,yhat_test)
                    test_coefOfDetermination=r2_score(ytrue_test,yhat_test)
                    test_Pearsonr=measure_Pearsonr(np.array(yhat_test).reshape(-1, 1),np.array(ytrue_test).reshape(-1))[0]
                    if args.log:
                        writer.add_scalar('mae/test', test_mae, epoch)
                        writer.add_scalar('rmse/test', test_rmse, epoch)
                    print(blue( f"epoch[{epoch:d}] test_mae: {test_mae:.3f} test_rmse: {test_rmse:.3f} test_Pearsonr: {test_Pearsonr:.3f} test_coefOfDetermination: {test_coefOfDetermination:.3f}" ))
                    if args.model in ['GFusion']: 
                        if args.fidelity_train==True:   
                            print(f"fidelity weight: {fidelity_weight[0]:.3f}, {fidelity_weight[1]:.3f}")
                        print(f"weighted_fidelity_weight: {weighted_fidelity_weight[0]:.3f}, {weighted_fidelity_weight[1]:.3f}")
                    val_trigger=val_mae                  
                if val_trigger < best_val_trigger:
                    best_val_trigger = val_trigger
                    best_GFusion_model = copy.deepcopy(GFusion_model)
                    best_fidelity=copy.deepcopy(fidelity_weight)
                    best_info=[epoch,val_trigger]
            """ 
            update lr when epoch≥30
            """
            if epoch >= 30:
                lr = scheduler.optimizer.param_groups[0]['lr']
                if old_lr!=lr:
                    print(red('lr'), epoch, (lr), sep=', ')
                    old_lr=lr
                scheduler.step(val_trigger)
                if args.fidelity_train:
                    scheduler2.step(val_trigger)             
    val_loss, yhat_val, ytrue_val = test(val_Loader,best_GFusion_model,best_fidelity)
    test_loss, yhat_test, ytrue_test = test(test_Loader,best_GFusion_model,best_fidelity)
    if args.dataset in ['south',"north",'syn','flu']:          
        val_mae = mean_absolute_error(ytrue_val, yhat_val)
        val_rmse=np.sqrt(mean_squared_error(ytrue_val,yhat_val))
        val_var=explained_variance_score(ytrue_val,yhat_val)
        print(blue( f"best_val  val_mae: {val_mae:.3f} val_rmse: {val_rmse:.3f} val_var: {val_var:.3f}" ))
        
        test_mae=mean_absolute_error(ytrue_test,yhat_test)
        test_rmse=np.sqrt(mean_squared_error(ytrue_test,yhat_test))
        test_var=explained_variance_score(ytrue_test,yhat_test)
        test_coefOfDetermination=r2_score(ytrue_test,yhat_test)
        test_Pearsonr=measure_Pearsonr(np.array(yhat_test).reshape(-1, 1),np.array(ytrue_test).reshape(-1))[0]
        print(blue( f"best_test test_mae: {test_mae:.3f} test_rmse: {test_rmse:.3f} test_var: {test_var:.3f}" ))
    if not args.loadmodel:
        """
        save training info and best result 
        """
        result_file=os.path.join(info_dir, suffix)
        with open(result_file, 'w') as f:
            print(args.num_neighbors,args.nepoch,sep=' ',file=f)
            print(f"fidelity weight: {best_fidelity[0]:.3f}, {best_fidelity[1]:.3f}",file=f)
            print("Random Seed: ", Seed,file=f)
            if args.dataset in ['south',"north",'syn','flu']:          
                print(f"MAE  val : {val_mae:.3f}, Test : {test_mae:.3f}", file=f)
                print(f"rmse val : {val_rmse:.3f}, Test : {test_rmse:.3f}", file=f)
                print(f"var  val : {val_var:.3f}, Test : {test_var:.3f}", file=f)        
                print(f"test_coefOfDetermination: {test_coefOfDetermination:.3f}, test_Pearsonr : {test_Pearsonr:.3f}", file=f)
            print(f"Best info: {best_info}", file=f)
            for i in [[a,getattr(args, a)] for a in args.__dict__]:
                print(i,sep='\n',file=f)
        with open(os.path.join(model_dir,'best_f_weight'+"_"+suffix+".pkl"), 'wb') as handle:
            pickle.dump(fidelity_weight, handle)
        torch.save(best_GFusion_model.state_dict(), os.path.join(model_dir,'best_GFusion_model'+"_"+suffix+'.pth') )
    print("done")
    
if __name__ == '__main__':
    args = get_args()
    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir,exist_ok=True)
    tensorboard_dir=os.path.join(args.save_dir,'log')
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir,exist_ok=True)
    model_dir=os.path.join(args.save_dir,'model')
    if not os.path.exists(model_dir):
        os.makedirs(model_dir,exist_ok=True)    
    info_dir=os.path.join(args.save_dir,'info')
    if not os.path.exists(info_dir):
        os.makedirs(info_dir,exist_ok=True)      
    Seed = args.man_seed if args.manualSeed else random.randint(1, 10000)
    print("Random Seed: ", Seed)
    random.seed(Seed)
    torch.manual_seed(Seed)  
    np.random.seed(Seed)
    flag=0
    if args.dataset in ['south',"north",'syn',"flu"]:
        graphs1,graphs2=dataset.load_point(args.dataset,args.num_neighbors,[False,200,500])
        np.random.shuffle(graphs1)
        val_test_split = int(np.around( 2 / 10 * len(graphs1) ))
        train_val_split = int(len(graphs1)-2*val_test_split)
        if args.single_high:
            train_graphs = graphs1[:train_val_split]
        else:
            train_graphs = graphs1[:train_val_split]+graphs2
        val_graphs = graphs1[train_val_split:train_val_split+val_test_split]
        test_graphs = graphs1[train_val_split+val_test_split:]
        
        np.random.shuffle(train_graphs)        
        train_Loader=DataLoader(train_graphs, batch_size=args.batchSize)
        val_Loader=DataLoader(val_graphs, batch_size=args.batchSize)
        test_Loader=DataLoader(test_graphs, batch_size=args.batchSize)
        print(f"train_pair_num: {len(train_graphs)}, val_pair_num: {len(val_graphs)}, test_pair_num: {len(test_graphs)}")
    else:
        raise Exception('Dataset not recognized.')    
    main(args,train_Loader,val_Loader,test_Loader)