File size: 16,634 Bytes
c7995e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import numpy as np
import torch.nn.functional as F
from torch.nn import Parameter

from torch_geometric.nn.dense.linear import Linear
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.utils import softmax
# from dataset import 
from torch_geometric.nn.inits import glorot, zeros

from torch_scatter import scatter
from utils.utils import triplets,get_angle,GaussianSmearing
from torch.nn import ModuleList
from math import pi as PI
import math

"""
The theory based Grid cell spatial relation encoder, 
See https://openreview.net/forum?id=Syx0Mh05YQ
Learning Grid Cells as Vector Representation of Self-Position Coupled with Matrix Representation of Self-Motion
"""
def _cal_freq_list(freq_init, frequency_num, max_radius, min_radius):
    if freq_init == "random":
        # the frequence we use for each block, alpha in paper
        # freq_list shape: (frequency_num)
        freq_list = np.random.random(size=[frequency_num]) * max_radius
    elif freq_init == "geometric":
        # freq_list = []
        # for cur_freq in range(frequency_num):
        #     base = 1.0/(np.power(max_radius, cur_freq*1.0/(frequency_num-1)))
        #     freq_list.append(base)

        # freq_list = np.asarray(freq_list)

        log_timescale_increment = (math.log(float(max_radius) / float(min_radius)) /
          (frequency_num*1.0 - 1))

        timescales = min_radius * np.exp(
            np.arange(frequency_num).astype(float) * log_timescale_increment)

        freq_list = 1.0/timescales

    return freq_list
class TheoryGridCellSpatialRelationEncoder(nn.Module):
    """
    Given a list of (deltaX,deltaY), encode them using the position encoding function

    """
    def __init__(self, spa_embed_dim, coord_dim = 2, frequency_num = 16, 
        max_radius = 10000,  min_radius = 1000, freq_init = "geometric", ffn = None):
        """
        Args:
            spa_embed_dim: the output spatial relation embedding dimention
            coord_dim: the dimention of space, 2D, 3D, or other
            frequency_num: the number of different sinusoidal with different frequencies/wavelengths
            max_radius: the largest context radius this model can handle
        """
        super(TheoryGridCellSpatialRelationEncoder, self).__init__()
        self.frequency_num = frequency_num
        self.coord_dim = coord_dim 
        self.max_radius = max_radius
        self.min_radius = min_radius
        self.spa_embed_dim = spa_embed_dim
        self.freq_init = freq_init

        # the frequence we use for each block, alpha in paper
        self.cal_freq_list()
        self.cal_freq_mat()

        # there unit vectors which is 120 degree apart from each other
        self.unit_vec1 = np.asarray([1.0, 0.0])                        # 0
        self.unit_vec2 = np.asarray([-1.0/2.0, math.sqrt(3)/2.0])      # 120 degree
        self.unit_vec3 = np.asarray([-1.0/2.0, -math.sqrt(3)/2.0])     # 240 degree


        self.input_embed_dim = self.cal_input_dim()
        self.ffn = ffn
        
    def cal_freq_list(self):
        self.freq_list = _cal_freq_list(self.freq_init, self.frequency_num, self.max_radius, self.min_radius)

    def cal_freq_mat(self):
        # freq_mat shape: (frequency_num, 1)
        freq_mat = np.expand_dims(self.freq_list, axis = 1)
        # self.freq_mat shape: (frequency_num, 6)
        self.freq_mat = np.repeat(freq_mat, 6, axis = 1)

    def cal_input_dim(self):
        # compute the dimention of the encoded spatial relation embedding
        return int(6 * self.frequency_num)


    def make_input_embeds(self, coords):
        if type(coords) == np.ndarray:
            assert self.coord_dim == np.shape(coords)[2]
            coords = list(coords)
        elif type(coords) == list:
            assert self.coord_dim == len(coords[0][0])
        elif type(coords)  == torch.Tensor:
            assert self.coord_dim == (coords.shape)[2]
            coords=coords.detach().cpu().numpy()
        else:
            raise Exception("Unknown coords data type for GridCellSpatialRelationEncoder")

        # (batch_size, num_context_pt, coord_dim)
        coords_mat = np.asarray(coords).astype(float)
        batch_size = coords_mat.shape[0]
        num_context_pt = coords_mat.shape[1]

        # compute the dot product between [deltaX, deltaY] and each unit_vec 
        # (batch_size, num_context_pt, 1)
        angle_mat1 = np.expand_dims(np.matmul(coords_mat, self.unit_vec1), axis = -1)
        # (batch_size, num_context_pt, 1)
        angle_mat2 = np.expand_dims(np.matmul(coords_mat, self.unit_vec2), axis = -1)
        # (batch_size, num_context_pt, 1)
        angle_mat3 = np.expand_dims(np.matmul(coords_mat, self.unit_vec3), axis = -1)

        # (batch_size, num_context_pt, 6)
        angle_mat = np.concatenate([angle_mat1, angle_mat1, angle_mat2, angle_mat2, angle_mat3, angle_mat3], axis = -1)
        # (batch_size, num_context_pt, 1, 6)
        angle_mat = np.expand_dims(angle_mat, axis = -2)
        # (batch_size, num_context_pt, frequency_num, 6)
        angle_mat = np.repeat(angle_mat, self.frequency_num, axis = -2)
        # (batch_size, num_context_pt, frequency_num, 6)
        angle_mat = angle_mat * self.freq_mat
        # (batch_size, num_context_pt, frequency_num*6)
        spr_embeds = np.reshape(angle_mat, (batch_size, num_context_pt, -1))

        # make sinuniod function
        # sin for 2i, cos for 2i+1
        # spr_embeds: (batch_size, num_context_pt, frequency_num*6=input_embed_dim)
        spr_embeds[:, :, 0::2] = np.sin(spr_embeds[:, :, 0::2])  # dim 2i
        spr_embeds[:, :, 1::2] = np.cos(spr_embeds[:, :, 1::2])  # dim 2i+1
        
        return spr_embeds
    
        
    def forward(self, coords):
        """
        Given a list of coords (deltaX, deltaY), give their spatial relation embedding
        Args:
            coords: a python list with shape (batch_size, num_context_pt, coord_dim)
        Return:
            sprenc: Tensor shape (batch_size, num_context_pt, spa_embed_dim)
        """
        spr_embeds = self.make_input_embeds(coords)

        # spr_embeds: (batch_size, num_context_pt, input_embed_dim)
        spr_embeds = torch.FloatTensor(spr_embeds) 
        if self.ffn is not None:
            return self.ffn(spr_embeds)
        else:
            return spr_embeds
theoryencoder=TheoryGridCellSpatialRelationEncoder(spa_embed_dim=8)

class GFusion(nn.Module):
    def __init__(self,  h_channel=16,input_featuresize=32,localdepth=2,num_interactions=3,finaldepth=3,num_of_datasources=2,share=True,batchnorm="False"):
        super(GFusion,self).__init__()
        self.training=True
        self.h_channel = h_channel
        self.input_featuresize=input_featuresize
        self.localdepth = localdepth
        self.num_interactions=num_interactions
        self.finaldepth=finaldepth
        self.batchnorm = batchnorm        
        self.activation=nn.ReLU()

        num_gaussians=(1,12)
        self.theta_expansion = GaussianSmearing(-PI, PI, num_gaussians[1])
        self.mlps_list = ModuleList()
        if int(share[0])==1:
            mlp_geo = ModuleList()
            for i in range(self.localdepth):
                if i == 0:
                    mlp_geo.append(Linear(sum(num_gaussians), h_channel))
                else:
                    mlp_geo.append(Linear(h_channel, h_channel))
                if self.batchnorm == "True":
                    mlp_geo.append(nn.BatchNorm1d(h_channel))
                mlp_geo.append(self.activation)            
            for i in range(num_of_datasources):
                self.mlps_list.append(mlp_geo)
        else:
            for i in range(num_of_datasources):
                mlp_geo = ModuleList()
                for i in range(self.localdepth):
                    if i == 0:
                        mlp_geo.append(Linear(sum(num_gaussians), h_channel))
                    else:
                        mlp_geo.append(Linear(h_channel, h_channel))
                    if self.batchnorm == "True":
                        mlp_geo.append(nn.BatchNorm1d(h_channel))
                    mlp_geo.append(self.activation)
                self.mlps_list.append(mlp_geo)         
        self.mlps_list_backup = ModuleList()
        for i in range(num_of_datasources):
            mlp_geo = ModuleList()
            for i in range(self.localdepth):
                if i == 0:
                    mlp_geo.append(Linear(4, h_channel)) # for FN version
                else:
                    mlp_geo.append(Linear(h_channel, h_channel))
                if self.batchnorm == "True":
                    mlp_geo.append(nn.BatchNorm1d(h_channel))
                mlp_geo.append(self.activation)
            self.mlps_list_backup.append(mlp_geo)            
        self.translinear=Linear(input_featuresize+1, self.h_channel)
        self.interactions_list = ModuleList()
        if int(share[1])==1:
            interactions= ModuleList()
            for i in range(self.num_interactions):
                block = SPNN(
                    in_ch=self.input_featuresize,
                    hidden_channels=self.h_channel,
                    activation=self.activation,
                    finaldepth=self.finaldepth,
                    batchnorm=self.batchnorm,
                    num_input_geofeature=self.h_channel
                )
                interactions.append(block)
            for i in range(num_of_datasources):
                self.interactions_list.append(interactions)
        else:          
            for i in range(num_of_datasources):
                interactions= ModuleList()
                for i in range(self.num_interactions):
                    block = SPNN(
                        in_ch=self.input_featuresize,
                        hidden_channels=self.h_channel,
                        activation=self.activation,
                        finaldepth=self.finaldepth,
                        batchnorm=self.batchnorm,
                        num_input_geofeature=self.h_channel
                    )
                    interactions.append(block)
                self.interactions_list.append(interactions)          
        self.finalMLP_list = ModuleList()
        if int(share[2])==1:
            finalMLP=ModuleList()
            for i in range(self.finaldepth + 1):
                finalMLP.append(Linear(self.h_channel, self.h_channel))  
                if self.batchnorm == "True":
                    finalMLP.append(nn.BatchNorm1d(self.h_channel))
                finalMLP.append(self.activation)
            finalMLP.append(Linear(self.h_channel, 1))
            for i in range(num_of_datasources):
                self.finalMLP_list.append(finalMLP)
        else:
            for i in range(num_of_datasources):
                finalMLP=ModuleList()
                for i in range(self.finaldepth + 1):
                    finalMLP.append(Linear(self.h_channel, self.h_channel))  
                    if self.batchnorm == "True":
                        finalMLP.append(nn.BatchNorm1d(self.h_channel))
                    finalMLP.append(self.activation)
                finalMLP.append(Linear(self.h_channel, 1))
                self.finalMLP_list.append(finalMLP)               
        self.reset_parameters()
    def reset_parameters(self):
        for i in range(len(self.mlps_list)):
            for lin in self.mlps_list[i]:
                if isinstance(lin, Linear):
                    torch.nn.init.xavier_uniform_(lin.weight)
                    lin.bias.data.fill_(0)
        for i in range(len(self.interactions_list)):
            for block in self.interactions_list[i]:
                block.reset_parameters()
        for finalMLP in self.finalMLP_list:
            for lin in finalMLP:
                if isinstance(lin, Linear):
                    torch.nn.init.xavier_uniform_(lin.weight)
                    lin.bias.data.fill_(0)  

    def single_forward(self, coords,edge_index,edge_index_2rd, edx_2nd,batch,input_feature,is_source,edge_rep,datasource_idx):
        distances={}
        thetas={}
        if edge_rep:
            i, j, k = edge_index_2rd 
            distances[1]=(coords[edge_index[0]] - coords[edge_index[1]]).norm(p=2, dim=1)
            theta_ijk = get_angle(coords[j] - coords[i], coords[k] - coords[j])
            v1 = torch.cross(F.pad(coords[j] - coords[i],(0,1)), F.pad(coords[k] - coords[j],(0,1)), dim=1)[...,2]
            flag = torch.sign((v1))
            flag[flag==0]=-1
            thetas[1] = scatter(theta_ijk*flag ,edx_2nd,dim=0,dim_size=edge_index.shape[1],reduce='min')
            thetas[1]=self.theta_expansion(thetas[1])
            geo_encoding_1st=distances[1][:,None]
            geo_encoding_1st[geo_encoding_1st==0]=1E-10
            geo_encoding_1st=torch.pow(geo_encoding_1st,-1)        
            geo_encoding_2nd = thetas[1]
            geo_encoding=torch.cat([geo_encoding_1st,geo_encoding_2nd],dim=-1)
        else:
            # coords=theoryencoder(coords[None,:])
            # coords=coords[0].to("cuda")
            
            coords_j = coords[edge_index[0]]
            coords_i = coords[edge_index[1]]
            geo_encoding=torch.cat([coords_j,coords_i],dim=-1)
        if edge_rep:
            for lin in self.mlps_list[datasource_idx]:
                geo_encoding=lin(geo_encoding)
        else:
            for lin in self.mlps_list_backup[datasource_idx]:
                geo_encoding=lin(geo_encoding)
            geo_encoding=torch.zeros_like(geo_encoding,device=geo_encoding.device,dtype=geo_encoding.dtype)            
        node_feature=self.translinear(input_feature[:,:-2])
        for interaction in self.interactions_list[datasource_idx]:
            node_feature =  interaction(node_feature,geo_encoding,edge_index,is_source)
        return node_feature
    def forward(self, coords,edge_index,edge_index_2rd, edx_2nd,batch,input_feature,is_source,edge_rep):
        outputs=[]
        for i in range(len(coords)):
            output=self.single_forward(coords[i],edge_index[i],edge_index_2rd[i], edx_2nd[i],batch[i],input_feature[i],is_source[i],edge_rep,i)
            for lin in self.finalMLP_list[i]:
                output=lin(output)
            outputs.append(output)
        return outputs
    
class SPNN(torch.nn.Module):
    def __init__(
        self,
        in_ch,
        hidden_channels,
        activation=torch.nn.ReLU(),
        finaldepth=3,
        batchnorm="False",
        num_input_geofeature=13
    ):
        super(SPNN, self).__init__()
        self.activation = activation
        self.finaldepth = finaldepth
        self.batchnorm = batchnorm
        self.num_input_geofeature=num_input_geofeature
        self.att = Parameter(torch.Tensor(1, hidden_channels),requires_grad=True)

        self.WMLP = ModuleList()
        for i in range(self.finaldepth + 1):
            if i == 0:
                self.WMLP.append(Linear(hidden_channels*2+num_input_geofeature, hidden_channels))
            else:
                self.WMLP.append(Linear(hidden_channels, hidden_channels))  
            if self.batchnorm == "True":
                self.WMLP.append(nn.BatchNorm1d(hidden_channels))
            self.WMLP.append(self.activation)
        self.reset_parameters()

    def reset_parameters(self):
        for lin in self.WMLP:
            if isinstance(lin, Linear):
                torch.nn.init.xavier_uniform_(lin.weight)
                lin.bias.data.fill_(0)
        glorot(self.att)
    def forward(self, node_feature,geo_encoding,edge_index,is_source):
        j, i = edge_index
        input_feature=node_feature.clone()
        if node_feature is None:
            concatenated_vector = geo_encoding
        else:
            node_attr_0st = node_feature[i]
            node_attr_1st = node_feature[j]
            concatenated_vector = torch.cat(
                [
                    node_attr_0st,
                    node_attr_1st,
                    geo_encoding,
                ],
                dim=-1,
            )
        x_i = concatenated_vector
        for lin in self.WMLP:
            x_i=lin(x_i)    
        input_feature_j=input_feature[edge_index[0]]
        x_i = F.leaky_relu(x_i)
        alpha = F.leaky_relu(x_i * self.att).sum(dim=-1)
        alpha = softmax(alpha, edge_index[1])
        
        message=input_feature_j * alpha.unsqueeze(-1)
        out_feature = scatter(message, edge_index[1], dim=0, reduce='add')    
        out_feature=input_feature+out_feature
     
        return out_feature