File size: 12,559 Bytes
e551dda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import argparse
import os
import random
import torch
import pandas as pd
import numpy as np
import time
import torch.optim as optim
import scipy
from matplotlib import cm
import matplotlib.pyplot as plt
import json
import torch.nn.functional as F
from torch.nn.functional import softmax
torch.autograd.set_detect_anomaly(True)
import pickle
from torch.utils.tensorboard import SummaryWriter
import dataset,util
from model_new import Smodel
import model_new
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets
import torchvision.models
import math
import shutil
import time
from datetime import date, timedelta,datetime
import torch_geometric
from torch_geometric.data import Data, DataLoader
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops
from torch_geometric.nn import GIN,GATConv,MLP
from torch_geometric.nn.pool import global_mean_pool,global_add_pool
import csv
blue = lambda x: '\033[94m' + x + '\033[0m'
red = lambda x: '\033[31m' + x + '\033[0m'
green = lambda x: '\033[32m' + x + '\033[0m'
yellow = lambda x: '\033[33m' + x + '\033[0m'
greenline = lambda x: '\033[42m' + x + '\033[0m'
yellowline = lambda x: '\033[43m' + x + '\033[0m'
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model',default="our", type=str)
parser.add_argument('--train_batch', default=64, type=int)
parser.add_argument('--test_batch', default=128, type=int)
parser.add_argument('--share', type=str, default="0")
parser.add_argument('--edge_rep', type=str, default="True")
parser.add_argument('--batchnorm', type=str, default="True")
parser.add_argument('--extent_norm', type=str, default="T")
parser.add_argument('--spanning_tree', type=str, default="F")
parser.add_argument('--loss_coef', default=0.1, type=float)
parser.add_argument('--h_ch', default=512, type=int)
parser.add_argument('--localdepth', type=int, default=1)
parser.add_argument('--num_interactions', type=int, default=4)
parser.add_argument('--finaldepth', type=int, default=4)
parser.add_argument('--classifier_depth', type=int, default=4)
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--dataset', type=str, default='mnist')
parser.add_argument('--log', type=str, default="True")
parser.add_argument('--test_per_round', type=int, default=10)
parser.add_argument('--patience', type=int, default=30) #scheduler
parser.add_argument('--nepoch', type=int, default=201)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--manualSeed', type=str, default="False")
parser.add_argument('--man_seed', type=int, default=12345)
parser.add_argument("--targetfiles", nargs='+', type=str, default=["Dec11-14:44:32.pth","Nov13-14:30:48.pth"])
args = parser.parse_args()
args.log=True if args.log=="True" else False
args.edge_rep=True if args.edge_rep=="True" else False
args.batchnorm=True if args.batchnorm=="True" else False
args.save_dir=os.path.join('./save/',args.dataset)
args.manualSeed=True if args.manualSeed=="True" else False
return args
args = get_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
criterion=nn.CrossEntropyLoss()
def forward_HGT(args,data,model,mlpmodel):
data = data.to(device)
x,batch=data.pos, data['vertices'].batch
data["vertices"]['x']=data.pos
label=data.y.long().view(-1)
output=model(data.x_dict, data.edge_index_dict)
if args.dataset in ["dbp"]:
graph_embeddings=global_add_pool(output,batch)
else:
graph_embeddings=global_add_pool(output,batch)
graph_embeddings.clamp_(max=1e6)
output=mlpmodel(graph_embeddings)
# log_probs = F.log_softmax(output, dim=1)
loss = criterion(output, label)
return loss,output,label, graph_embeddings
def forward(args,data,model,mlpmodel):
data = data.to(device)
edge_index1=data['vertices', 'inside', 'vertices']['edge_index']
edge_index2=data['vertices', 'apart', 'vertices']['edge_index']
combined_edge_index=torch.cat([data['vertices', 'inside', 'vertices']['edge_index'],data['vertices', 'apart', 'vertices']['edge_index']],1)
if args.spanning_tree == 'True':
edge_weight=torch.rand(combined_edge_index.shape[1]) + 1
combined_edge_index = util.build_spanning_tree_edge(combined_edge_index, edge_weight,num_nodes=num_nodes,)
num_edge_inside=edge_index1.shape[1]
x,batch=data.pos, data['vertices'].batch
label=data.y.long().view(-1)
"""
triplets are not the same for graphs when training
"""
num_nodes=x.shape[0]
edge_index_2rd, num_triplets_real, edx_jk, edx_ij = util.triplets(combined_edge_index, num_nodes)
input_feature=torch.zeros([x.shape[0],args.h_ch],device=device)
output=model(input_feature,x,[edge_index1,edge_index2], edge_index_2rd,edx_jk, edx_ij,batch,num_edge_inside,args.edge_rep)
output=torch.cat(output,dim=1)
graph_embeddings=global_add_pool(output,batch)
graph_embeddings.clamp_(max=1e6)
output=mlpmodel(graph_embeddings)
# log_probs = F.log_softmax(output, dim=1)
loss = criterion(output, label)
return loss,output,label,graph_embeddings
def test(args,loader,model,mlpmodel,writer,reverse_mapping ):
y_hat, y_true,y_hat_logit = [], [], [],
embeddings=[]
loss_total, pred_num = 0, 0
model.eval()
mlpmodel.eval()
with torch.no_grad():
for data in loader:
if args.model=="our":
loss,output,label,embedding =forward(args,data,model,mlpmodel)
elif args.model in ["HGT","HAN"]:
loss,output,label,embedding =forward_HGT(args,data,model,mlpmodel)
_, pred = output.topk(1, dim=1, largest=True, sorted=True)
pred,label,output=pred.cpu(),label.cpu(),output.cpu()
y_hat += list(pred.detach().numpy().reshape(-1))
y_true += list(label.detach().numpy().reshape(-1))
y_hat_logit+=list(output.detach().numpy())
embeddings.append(embedding)
pred_num += len(label.reshape(-1, 1))
loss_total += loss.detach() * len(label.reshape(-1, 1))
y_true_str=[reverse_mapping(item) for item in y_true]
writer.add_embedding(torch.cat(embeddings,dim=0).detach().cpu(),metadata=y_true_str,tag="numbers")
writer.close()
return loss_total/pred_num,y_hat, y_true, y_hat_logit
def main(args,train_Loader,val_Loader,test_Loader):
donefiles=os.listdir(os.path.join(args.save_dir,args.model,'model'))
tensorboard_dir=os.path.join(args.save_dir,args.model,'log')
if args.dataset in ["mnist","mnist_sparse"]:
reverse_mapping=lambda x: x + 10
# list(map(lambda x: x - 10, []))
elif args.dataset in ["building","mbuilding"]:
reverse_mapping=lambda x: dataset.reverse_label_mapping[x]
elif args.dataset in ["sbuilding"]:
reverse_mapping=lambda x: dataset.single_reverse_label_mapping[x]
elif args.dataset in ["dbp","smnist"]:
reverse_mapping=lambda x: x
for file in donefiles:
if file not in args.targetfiles:
continue
else:
print(file)
saved_dict=torch.load(os.path.join(args.save_dir,args.model,'model',file))
if saved_dict['args'].dataset in ["mnist","mnist_sparse"]:
x_out=90
elif saved_dict['args'].dataset in ["building","mbuilding"]:
x_out=100
elif saved_dict['args'].dataset in ["sbuilding","smnist"]:
x_out=10
elif saved_dict['args'].dataset in ["dbp"]:
x_out=2
if saved_dict['args'].model=="our":
model=Smodel(h_channel=saved_dict['args'].h_ch,input_featuresize=saved_dict['args'].h_ch,\
localdepth=saved_dict['args'].localdepth,num_interactions=saved_dict['args'].num_interactions,finaldepth=saved_dict['args'].finaldepth,share=saved_dict['args'].share,batchnorm=saved_dict['args'].batchnorm)
mlpmodel=MLP(in_channels=saved_dict['args'].h_ch*saved_dict['args'].num_interactions, hidden_channels=saved_dict['args'].h_ch,out_channels=x_out, num_layers=saved_dict['args'].classifier_depth)
elif saved_dict['args'].model=="HGT":
model=model_new.HGT(hidden_channels=saved_dict['args'].h_ch, out_channels=saved_dict['args'].h_ch, num_heads=2, num_layers=saved_dict['args'].num_interactions)
mlpmodel=MLP(in_channels=saved_dict['args'].h_ch, hidden_channels=saved_dict['args'].h_ch,out_channels=x_out, num_layers=saved_dict['args'].classifier_depth,dropout=saved_dict['args'].dropout)
elif saved_dict['args'].model=="HAN":
model=model_new.HAN(hidden_channels=saved_dict['args'].h_ch, out_channels=saved_dict['args'].h_ch, num_heads=2, num_layers=saved_dict['args'].num_interactions)
mlpmodel=MLP(in_channels=saved_dict['args'].h_ch, hidden_channels=saved_dict['args'].h_ch,out_channels=x_out, num_layers=saved_dict['args'].classifier_depth,dropout=saved_dict['args'].dropout)
model.to(device), mlpmodel.to(device)
try:
model.load_state_dict(saved_dict['model'],strict=True)
mlpmodel.load_state_dict(saved_dict['mlpmodel'],strict=True)
except OSError:
print('loadfail: ',file)
pass
print(saved_dict['args'])
writer = SummaryWriter(os.path.join(tensorboard_dir,file+"_embedding"))
test_loss, yhat_test, ytrue_test, yhatlogit_test = test(saved_dict['args'],test_Loader,model,mlpmodel,writer,reverse_mapping)
pred_dir=os.path.join(tensorboard_dir,file+"_test_record")
to_save_dict={'labels':ytrue_test,'yhat':yhat_test,'yhat_logit':yhatlogit_test}
torch.save(to_save_dict, pred_dir)
test_acc=util.calculate(yhat_test,ytrue_test,yhatlogit_test)
util.print_1(0,'Test', {"loss":test_loss,"acc":test_acc},color=blue)
if __name__ == '__main__':
Seed = 0
test_ratio=0.2
print("data splitting Random Seed: ", Seed)
if args.dataset in ["mnist"]:
args.data_dir='data/multi_mnist_with_index.pkl'
train_ds,val_ds,test_ds=dataset.get_mnist_dataset(args.data_dir,Seed,test_ratio=test_ratio)
elif args.dataset in ["mnist_sparse"]:
args.data_dir='data/multi_mnist_sparse.pkl'
train_ds,val_ds,test_ds=dataset.get_mnist_dataset(args.data_dir,Seed,test_ratio=test_ratio)
elif args.dataset in ["building"]:
args.data_dir='data/building_with_index.pkl'
train_ds,val_ds,test_ds=dataset.get_mbuilding_dataset(args.data_dir,Seed,test_ratio=test_ratio)
elif args.dataset in ["mbuilding"]:
args.data_dir='data/mp_building.pkl'
train_ds,val_ds,test_ds=dataset.get_building_dataset(args.data_dir,Seed,test_ratio=test_ratio)
elif args.dataset in ["sbuilding"]:
args.data_dir='data/single_building.pkl'
train_ds,val_ds,test_ds=dataset.get_sbuilding_dataset(args.data_dir,Seed,test_ratio=test_ratio)
elif args.dataset in ["smnist"]:
args.data_dir='data/single_mnist.pkl'
train_ds,val_ds,test_ds=dataset.get_smnist_dataset(args.data_dir,Seed,test_ratio=test_ratio)
elif args.dataset in ['dbp']:
args.data_dir='data/triple_building_600.pkl'
train_ds,val_ds,test_ds=dataset.get_dbp_dataset(args.data_dir,Seed,test_ratio=test_ratio)
if args.extent_norm=="T":
train_ds= dataset.affine_transform_to_range(train_ds,target_range=(-1, 1))
val_ds= dataset.affine_transform_to_range(val_ds,target_range=(-1, 1))
test_ds= dataset.affine_transform_to_range(test_ds,target_range=(-1, 1))
train_loader = torch_geometric.loader.DataLoader(train_ds,batch_size=args.train_batch, shuffle=False,pin_memory=True)
val_loader = torch_geometric.loader.DataLoader(val_ds, batch_size=args.test_batch, shuffle=False, pin_memory=True)
test_loader = torch_geometric.loader.DataLoader(test_ds,batch_size=args.test_batch, shuffle=False,pin_memory=True)
Seed=random.randint(1, 10000)
print("Random Seed: ", Seed)
random.seed(Seed)
torch.manual_seed(Seed)
np.random.seed(Seed)
main(args,train_loader,val_loader,test_loader) |