File size: 12,559 Bytes
e551dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import argparse
import os
import random
import torch
import pandas as pd
import numpy as np
import time
import torch.optim as optim
import scipy

from matplotlib import cm
import matplotlib.pyplot as plt
import json
import torch.nn.functional as F
from torch.nn.functional import softmax

torch.autograd.set_detect_anomaly(True)
import pickle
from torch.utils.tensorboard import SummaryWriter
import dataset,util
from model_new import Smodel
import model_new


import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets
import torchvision.models
import math
import shutil
import time
from datetime import date, timedelta,datetime
import torch_geometric
from torch_geometric.data import Data, DataLoader
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops
from torch_geometric.nn import GIN,GATConv,MLP
from torch_geometric.nn.pool import global_mean_pool,global_add_pool
import csv

blue = lambda x: '\033[94m' + x + '\033[0m'
red = lambda x: '\033[31m' + x + '\033[0m'
green = lambda x: '\033[32m' + x + '\033[0m'
yellow = lambda x: '\033[33m' + x + '\033[0m'
greenline = lambda x: '\033[42m' + x + '\033[0m'
yellowline = lambda x: '\033[43m' + x + '\033[0m'

def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model',default="our", type=str)
    parser.add_argument('--train_batch', default=64, type=int)
    parser.add_argument('--test_batch', default=128, type=int)
    parser.add_argument('--share', type=str, default="0")
    parser.add_argument('--edge_rep', type=str, default="True")
    parser.add_argument('--batchnorm', type=str, default="True")
    parser.add_argument('--extent_norm', type=str, default="T")
    parser.add_argument('--spanning_tree', type=str, default="F")
    
    parser.add_argument('--loss_coef', default=0.1, type=float)
    parser.add_argument('--h_ch', default=512, type=int)
    parser.add_argument('--localdepth', type=int, default=1)
    parser.add_argument('--num_interactions', type=int, default=4)
    parser.add_argument('--finaldepth', type=int, default=4)
    parser.add_argument('--classifier_depth', type=int, default=4)
    parser.add_argument('--dropout', type=float, default=0.0)

    parser.add_argument('--dataset', type=str, default='mnist')
    parser.add_argument('--log', type=str, default="True")  
    parser.add_argument('--test_per_round', type=int, default=10)
    parser.add_argument('--patience', type=int, default=30)  #scheduler
    parser.add_argument('--nepoch', type=int, default=201)
    parser.add_argument('--lr', type=float, default=1e-4)
    parser.add_argument('--manualSeed', type=str, default="False")
    parser.add_argument('--man_seed', type=int, default=12345)
    
    parser.add_argument("--targetfiles", nargs='+', type=str, default=["Dec11-14:44:32.pth","Nov13-14:30:48.pth"])
    args = parser.parse_args()
    args.log=True if args.log=="True" else False
    args.edge_rep=True if args.edge_rep=="True" else False
    args.batchnorm=True if args.batchnorm=="True" else False
    args.save_dir=os.path.join('./save/',args.dataset)
    args.manualSeed=True if args.manualSeed=="True" else False
    return args

args = get_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
criterion=nn.CrossEntropyLoss()

def forward_HGT(args,data,model,mlpmodel):
    data = data.to(device)
    x,batch=data.pos, data['vertices'].batch
    data["vertices"]['x']=data.pos
    label=data.y.long().view(-1)
    
    output=model(data.x_dict, data.edge_index_dict)  
    if args.dataset in ["dbp"]:
        graph_embeddings=global_add_pool(output,batch)
    else:
        graph_embeddings=global_add_pool(output,batch)
    graph_embeddings.clamp_(max=1e6)

    output=mlpmodel(graph_embeddings)
    # log_probs = F.log_softmax(output, dim=1)

    loss = criterion(output, label) 
    return loss,output,label, graph_embeddings

def forward(args,data,model,mlpmodel):
    data = data.to(device)
    edge_index1=data['vertices', 'inside', 'vertices']['edge_index']
    edge_index2=data['vertices', 'apart', 'vertices']['edge_index']
    combined_edge_index=torch.cat([data['vertices', 'inside', 'vertices']['edge_index'],data['vertices', 'apart', 'vertices']['edge_index']],1)
    
    if args.spanning_tree == 'True':
        edge_weight=torch.rand(combined_edge_index.shape[1]) + 1
        combined_edge_index = util.build_spanning_tree_edge(combined_edge_index, edge_weight,num_nodes=num_nodes,)
    
    num_edge_inside=edge_index1.shape[1]
    x,batch=data.pos, data['vertices'].batch
    label=data.y.long().view(-1)
    """ 
    triplets are not the same for graphs when training 
    """
    num_nodes=x.shape[0]
    edge_index_2rd, num_triplets_real, edx_jk, edx_ij = util.triplets(combined_edge_index, num_nodes)
    
    input_feature=torch.zeros([x.shape[0],args.h_ch],device=device) 
    output=model(input_feature,x,[edge_index1,edge_index2], edge_index_2rd,edx_jk, edx_ij,batch,num_edge_inside,args.edge_rep)   
    output=torch.cat(output,dim=1)
    graph_embeddings=global_add_pool(output,batch)
    graph_embeddings.clamp_(max=1e6)
 
    output=mlpmodel(graph_embeddings)
    # log_probs = F.log_softmax(output, dim=1)

    loss = criterion(output, label) 
    return loss,output,label,graph_embeddings
def test(args,loader,model,mlpmodel,writer,reverse_mapping ):
    y_hat, y_true,y_hat_logit = [], [], [],
    embeddings=[]

    loss_total, pred_num = 0, 0
    model.eval()
    mlpmodel.eval()
    with torch.no_grad():
        for data in loader:
            if args.model=="our":
                loss,output,label,embedding  =forward(args,data,model,mlpmodel)
            elif args.model in ["HGT","HAN"]:
                loss,output,label,embedding =forward_HGT(args,data,model,mlpmodel)            
            _, pred = output.topk(1, dim=1, largest=True, sorted=True)
            pred,label,output=pred.cpu(),label.cpu(),output.cpu()
            y_hat += list(pred.detach().numpy().reshape(-1))
            y_true += list(label.detach().numpy().reshape(-1))
            y_hat_logit+=list(output.detach().numpy())
            embeddings.append(embedding)
            
            pred_num += len(label.reshape(-1, 1))
            loss_total += loss.detach() * len(label.reshape(-1, 1))
            
    y_true_str=[reverse_mapping(item) for item in y_true] 
    writer.add_embedding(torch.cat(embeddings,dim=0).detach().cpu(),metadata=y_true_str,tag="numbers")
    writer.close()      
    return loss_total/pred_num,y_hat, y_true, y_hat_logit  
 
def main(args,train_Loader,val_Loader,test_Loader):
    donefiles=os.listdir(os.path.join(args.save_dir,args.model,'model'))
    tensorboard_dir=os.path.join(args.save_dir,args.model,'log') 
    if args.dataset in ["mnist","mnist_sparse"]:
        reverse_mapping=lambda x: x + 10
        # list(map(lambda x: x - 10, []))
    elif args.dataset in ["building","mbuilding"]:
        reverse_mapping=lambda x: dataset.reverse_label_mapping[x]
    elif args.dataset in ["sbuilding"]:
        reverse_mapping=lambda x: dataset.single_reverse_label_mapping[x]
    elif args.dataset in ["dbp","smnist"]:
        reverse_mapping=lambda x: x
    for file in donefiles:
        if file not in args.targetfiles:
            continue
        else:
            print(file)
            saved_dict=torch.load(os.path.join(args.save_dir,args.model,'model',file))   
            if saved_dict['args'].dataset in ["mnist","mnist_sparse"]:
                x_out=90
            elif saved_dict['args'].dataset in ["building","mbuilding"]:
                x_out=100
            elif saved_dict['args'].dataset in ["sbuilding","smnist"]:
                x_out=10
            elif saved_dict['args'].dataset in ["dbp"]:
                x_out=2
            if saved_dict['args'].model=="our":
                model=Smodel(h_channel=saved_dict['args'].h_ch,input_featuresize=saved_dict['args'].h_ch,\
                                localdepth=saved_dict['args'].localdepth,num_interactions=saved_dict['args'].num_interactions,finaldepth=saved_dict['args'].finaldepth,share=saved_dict['args'].share,batchnorm=saved_dict['args'].batchnorm)
                mlpmodel=MLP(in_channels=saved_dict['args'].h_ch*saved_dict['args'].num_interactions, hidden_channels=saved_dict['args'].h_ch,out_channels=x_out, num_layers=saved_dict['args'].classifier_depth)
            elif saved_dict['args'].model=="HGT":
                model=model_new.HGT(hidden_channels=saved_dict['args'].h_ch, out_channels=saved_dict['args'].h_ch, num_heads=2, num_layers=saved_dict['args'].num_interactions)
                mlpmodel=MLP(in_channels=saved_dict['args'].h_ch, hidden_channels=saved_dict['args'].h_ch,out_channels=x_out, num_layers=saved_dict['args'].classifier_depth,dropout=saved_dict['args'].dropout)
            elif saved_dict['args'].model=="HAN":
                model=model_new.HAN(hidden_channels=saved_dict['args'].h_ch, out_channels=saved_dict['args'].h_ch, num_heads=2, num_layers=saved_dict['args'].num_interactions)
                mlpmodel=MLP(in_channels=saved_dict['args'].h_ch, hidden_channels=saved_dict['args'].h_ch,out_channels=x_out, num_layers=saved_dict['args'].classifier_depth,dropout=saved_dict['args'].dropout)
            model.to(device), mlpmodel.to(device)         
            try:
                model.load_state_dict(saved_dict['model'],strict=True)
                mlpmodel.load_state_dict(saved_dict['mlpmodel'],strict=True)
            except OSError:
                print('loadfail: ',file)
                pass
            print(saved_dict['args'])

            writer = SummaryWriter(os.path.join(tensorboard_dir,file+"_embedding"))
            test_loss, yhat_test, ytrue_test, yhatlogit_test = test(saved_dict['args'],test_Loader,model,mlpmodel,writer,reverse_mapping)
                
            pred_dir=os.path.join(tensorboard_dir,file+"_test_record")
            to_save_dict={'labels':ytrue_test,'yhat':yhat_test,'yhat_logit':yhatlogit_test}
            torch.save(to_save_dict, pred_dir)
                           
            test_acc=util.calculate(yhat_test,ytrue_test,yhatlogit_test)
            util.print_1(0,'Test', {"loss":test_loss,"acc":test_acc},color=blue) 

        
if __name__ == '__main__':
    Seed = 0
    test_ratio=0.2
    print("data splitting Random Seed: ", Seed)
    if args.dataset in ["mnist"]:
        args.data_dir='data/multi_mnist_with_index.pkl'
        train_ds,val_ds,test_ds=dataset.get_mnist_dataset(args.data_dir,Seed,test_ratio=test_ratio)
    elif args.dataset in ["mnist_sparse"]:
        args.data_dir='data/multi_mnist_sparse.pkl'  
        train_ds,val_ds,test_ds=dataset.get_mnist_dataset(args.data_dir,Seed,test_ratio=test_ratio)      
    elif args.dataset in ["building"]:
        args.data_dir='data/building_with_index.pkl'
        train_ds,val_ds,test_ds=dataset.get_mbuilding_dataset(args.data_dir,Seed,test_ratio=test_ratio)
    elif args.dataset in ["mbuilding"]:
        args.data_dir='data/mp_building.pkl'
        train_ds,val_ds,test_ds=dataset.get_building_dataset(args.data_dir,Seed,test_ratio=test_ratio)
    elif args.dataset in ["sbuilding"]:
        args.data_dir='data/single_building.pkl'
        train_ds,val_ds,test_ds=dataset.get_sbuilding_dataset(args.data_dir,Seed,test_ratio=test_ratio)
    elif args.dataset in ["smnist"]:
        args.data_dir='data/single_mnist.pkl'
        train_ds,val_ds,test_ds=dataset.get_smnist_dataset(args.data_dir,Seed,test_ratio=test_ratio)
    elif args.dataset in ['dbp']:
        args.data_dir='data/triple_building_600.pkl'
        train_ds,val_ds,test_ds=dataset.get_dbp_dataset(args.data_dir,Seed,test_ratio=test_ratio)

    if args.extent_norm=="T":
        train_ds= dataset.affine_transform_to_range(train_ds,target_range=(-1, 1))
        val_ds= dataset.affine_transform_to_range(val_ds,target_range=(-1, 1))
        test_ds= dataset.affine_transform_to_range(test_ds,target_range=(-1, 1))              
    train_loader = torch_geometric.loader.DataLoader(train_ds,batch_size=args.train_batch, shuffle=False,pin_memory=True) 
    val_loader = torch_geometric.loader.DataLoader(val_ds, batch_size=args.test_batch, shuffle=False, pin_memory=True)
    test_loader = torch_geometric.loader.DataLoader(test_ds,batch_size=args.test_batch, shuffle=False,pin_memory=True)

    Seed=random.randint(1, 10000)
    print("Random Seed: ", Seed)
    random.seed(Seed)
    torch.manual_seed(Seed)  
    np.random.seed(Seed)     
    main(args,train_loader,val_loader,test_loader)