File size: 6,156 Bytes
c6b1960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import logging

import datasets
from datasets import DatasetDict, load_dataset, concatenate_datasets
from tqdm import tqdm
from transformers import (
    AutoConfig,
    AutoFeatureExtractor,
    AutoModelForSpeechSeq2Seq,
    AutoTokenizer,
    set_seed,
)
from transformers.utils.versions import require_version
from transformers.utils import check_min_version
from tqdm import tqdm

from audiomentations import (
    AddBackgroundNoise,
    AddGaussianNoise,
    Compose,
    Gain,
    OneOf,
    PitchShift,
    PolarityInversion,
    TimeStretch,
)


check_min_version("4.27.0.dev0")

require_version(
    "datasets>=1.18.0",
    "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt",
)

logger = logging.getLogger(__name__)
from datasets import Dataset, DatasetDict
import torchaudio
from torchaudio import transforms as at
import pandas as pd
import torch
from pathlib import Path
import random
def main():
    # Set seed before initializing model.
    set_seed(42)

    # 5. Load pretrained model, tokenizer, and feature extractor
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    config = AutoConfig.from_pretrained(
        "openai/whisper-medium", revision="main", use_auth_token=True
    )

    config.update({"forced_decoder_ids": None, "suppress_tokens": None})

    # *****************************SpecAugment for whisper models
    # if getattr(config, "model_type", None) == "whisper":
    config.update({"apply_spec_augment": True})

    feature_extractor = AutoFeatureExtractor.from_pretrained(
        "openai/whisper-medium",
        revision="main",
        use_auth_token=True,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        "openai/whisper-medium",
        use_fast=True,
        revision="main",
        use_auth_token=True,
    )

    tokenizer.set_prefix_tokens(language="vi", task="transcribe")

    # 7. Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    max_input_length = 30.0 * 16000
    min_input_length = 0.0 * 16000
    audio_column_name = "audio"
    num_workers = 16
    text_column_name = "text"
    model_input_name = feature_extractor.model_input_names[0]

    # if SpecAugment is used for whisper models, return attention_mask to guide the mask along time axis
    forward_attention_mask = True

    # noise_dir = "../noise/ESC-50-master/audio/"
    # define augmentation
    augmentation = Compose(
        [
            TimeStretch(min_rate=0.9, max_rate=1.1, p=0.2, leave_length_unchanged=True),
            Gain(min_gain_in_db=-6, max_gain_in_db=6, p=0.1),
            PitchShift(min_semitones=-4, max_semitones=4, p=0.2),
        ]
    )

    def augment_dataset(batch):
        # load and (possibly) resample audio data to 16kHz
        sample = batch["audio"]

        # apply augmentation
        augmented_waveform = augmentation(
            sample, sample_rate=16000
        )
        batch["audio"]["array"] = augmented_waveform
        return batch

    def prepare_dataset(batch):
        # process audio
        sample = batch[audio_column_name]
        inputs = feature_extractor(
            sample,
            sampling_rate= 16000,
            return_attention_mask=forward_attention_mask,
        )
        # process audio length
        batch[model_input_name] = inputs.get(model_input_name)[0]
        batch["input_length"] = len(sample)
        if forward_attention_mask:
            batch["attention_mask"] = inputs.get("attention_mask")[0]

        # process targets
        input_str = batch[text_column_name]
        batch["labels"] = tokenizer(input_str).input_ids
        return batch


    def load_wave(wave_path, sample_rate:int=16000) -> torch.Tensor:
        waveform, sr = torchaudio.load(wave_path, normalize=True)
        if sample_rate != sr:
            waveform = at.Resample(sr, sample_rate)(waveform)
        return waveform
    

    def get_list_files_MITI(phase, sample_rate=16000, audio_max_sample_length=480000, fraction=0.15):
        audio_list = []
        text_list = []
        if phase == 'train':
            csv_file = 'vin_train.csv'
        else:
            csv_file = 'vin_test.csv'
        df = pd.read_csv(csv_file)
        
        # Calculate the number of samples to select based on the fraction
        num_samples = int(len(df) * fraction)
        
        # Randomly select the indices of samples
        selected_indices = random.sample(range(len(df)), num_samples)
        
        for index, row in tqdm(df.iterrows()):
            if index not in selected_indices:
                continue
            
            new_path = Path(row['path'])
            audio_id = index
            text = row['sentence']
            
            if new_path.exists():
                audio = load_wave(new_path, sample_rate=sample_rate)[0]
                if len(audio) > audio_max_sample_length or len(audio) < 0:
                    print('skip file:', new_path, 'with len audio', len(audio))
                    continue
            audio_list.append(audio)
            text_list.append(text)

        return audio_list, text_list

    # Assuming you have two CSV files, 'vin_train.csv' and 'vin_test.csv', in the same directory

    # Get the training dataset
    train_audio, train_text = get_list_files_MITI(phase='train')

    # Get the testing dataset
    test_audio, test_text = get_list_files_MITI(phase='test')

    # Create the Dataset objects
    train_dataset = Dataset.from_dict({"audio": train_audio, "text": train_text})
    test_dataset = Dataset.from_dict({"audio": test_audio, "text": test_text})

    # Create the DatasetDict
    vin_100h = DatasetDict({"train": train_dataset, "test": test_dataset})





    print(vin_100h)





    vectorized_datasets = vin_100h.map(
        prepare_dataset,
        remove_columns=["audio", "text"],
        num_proc=1,
        desc="preprocess train dataset",
    )


    print(vectorized_datasets)

    vectorized_datasets.save_to_disk(
        "./vin_10h", num_proc=1
    )

    return


if __name__ == "__main__":
    main()