File size: 9,352 Bytes
70e068a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import os
from glob import glob
import torch
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
import monai
from monai.data import ArrayDataset, decollate_batch, DataLoader
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.transforms import (
Activations,
AsDiscrete,
Compose,
LoadImage,
RandRotate90,
ScaleIntensity,
#AsChannelFirst
)
from monai.visualize import plot_2d_or_3d_image
from PIL import Image
import cv2
import tifffile
import os
# Preprocess
def convert_to_png(img_dir):
# Lấy danh sách tệp tin trong thư mục ảnh
img_files = [file for file in os.listdir(img_dir) if file.endswith(('.jpg', '.jpeg', '.png', '.tif'))]
# Chuyển đổi từng ảnh sang định dạng .png
for img_file in img_files:
img_path = os.path.join(img_dir, img_file)
if img_file.endswith('.tif'):
# Đọc tệp .tif và chuyển đổi thành ảnh
with tifffile.TiffFile(img_path) as tif:
img = Image.fromarray(tif.asarray())
else:
# Đọc ảnh từ các định dạng khác
img = Image.open(img_path)
# Lưu ảnh dưới dạng .png
png_path = os.path.join(img_dir, os.path.splitext(img_file)[0] + '.png')
img.save(png_path)
convert_to_png("./tamp500/imgs")
images = sorted(glob(os.path.join("./tamp500/imgs", "*.png")))
segs = sorted(glob(os.path.join("./tamp500/masks", "*.png")))
def resize_images_and_masks(image_paths, mask_paths, output_dir, target_width, target_height):
"""
Resize images and corresponding segmentation masks to the specified dimensions.
Args:
- image_paths (list): List of paths to the input images.
- mask_paths (list): List of paths to the segmentation masks.
- output_dir (str): Directory to save the resized images and masks.
- target_width (int): Target width for resizing.
- target_height (int): Target height for resizing.
Returns:
- resized_image_paths (list): List of paths to the resized images.
- resized_mask_paths (list): List of paths to the resized segmentation masks.
"""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
resized_image_dir = os.path.join(output_dir, 'resized_images')
resized_mask_dir = os.path.join(output_dir, 'resized_masks')
if not os.path.exists(resized_image_dir):
os.makedirs(resized_image_dir)
if not os.path.exists(resized_mask_dir):
os.makedirs(resized_mask_dir)
resized_image_paths = []
resized_mask_paths = []
for img_path, mask_path in zip(image_paths, mask_paths):
# Read the image and mask
img = cv2.imread(img_path)
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
# Resize the image
resized_img = cv2.resize(img, (target_width, target_height))
# Resize the mask
resized_mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
# Extract the filename from the image path
img_filename = os.path.basename(img_path)
# Construct the output image path
output_img_path = os.path.join(resized_image_dir, img_filename)
# Write the resized image to the output path
cv2.imwrite(output_img_path, resized_img)
resized_image_paths.append(output_img_path)
# Extract the filename from the mask path
mask_filename = os.path.basename(mask_path)
# Construct the output mask path
output_mask_path = os.path.join(resized_mask_dir, mask_filename)
# Write the resized mask to the output path
cv2.imwrite(output_mask_path, resized_mask)
resized_mask_paths.append(output_mask_path)
return resized_image_paths, resized_mask_paths
images = sorted(glob(os.path.join("./tamp500/imgs", "*.png")))
masks = sorted(glob(os.path.join("./tamp500/masks", "*.png")))
output_directory = 'resized_'
target_width = 448
target_height = 448
resized_image_paths, resized_mask_paths = resize_images_and_masks(images, masks, output_directory, target_width, target_height)
images = sorted(glob(os.path.join("./resized_/resized_images", "*.png")))
segs = sorted(glob(os.path.join("./resized_/resized_masks", "*.png")))
from sklearn.model_selection import train_test_split
train_images,test_images,train_segs,test_segs = train_test_split(images,segs,test_size = 0.2,random_state = 42)
# define transforms for image and segmentation
train_imtrans = Compose(
[
LoadImage(image_only=True, ensure_channel_first=True),
ScaleIntensity(),
#RandSpatialCrop((224, 224), random_size=False),
RandRotate90(prob=0.5, spatial_axes=(0, 1)),
]
)
train_segtrans = Compose(
[
LoadImage(image_only=True, ensure_channel_first=True),
ScaleIntensity(),
#RandSpatialCrop((224, 224), random_size=False),
RandRotate90(prob=0.5, spatial_axes=(0, 1)),
]
)
val_imtrans = Compose([LoadImage(image_only=True, ensure_channel_first=True), ScaleIntensity()])
val_segtrans = Compose([LoadImage(image_only=True, ensure_channel_first=True), ScaleIntensity()])
# create a training data loader
train_ds = ArrayDataset(train_images, train_imtrans, train_segs, train_segtrans)
train_loader = DataLoader(train_ds, batch_size=4, shuffle=True, num_workers=2, pin_memory=torch.cuda.is_available())
# create a validation data loader
val_ds = ArrayDataset(test_images, val_imtrans, test_segs, val_segtrans)
val_loader = DataLoader(val_ds, batch_size=1, num_workers=2, pin_memory=torch.cuda.is_available())
dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)
post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
# create UNet, DiceLoss and Adam optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model = monai.networks.nets.UNet(
# spatial_dims=2,
# in_channels=3,
# out_channels=1,
# channels=(16, 32, 64, 128, 256),
# strides=(2, 2, 2, 2),
# num_res_units=2,
# ).to(device)
model = monai.networks.nets.UNETR(
spatial_dims=2,
in_channels=3,
out_channels=1,
img_size =(448,448),
#channels=(16, 32, 64, 128, 256),
#strides=(2, 2, 2, 2),
#num_res_units=2,
).to(device)
loss_function = monai.losses.DiceLoss(sigmoid=True)
optimizer = torch.optim.Adam(model.parameters(), 1e-3)
# start a typical PyTorch training
val_interval = 2
best_metric = -1
best_metric_epoch = -1
epoch_loss_values = list()
metric_values = list()
writer = SummaryWriter()
for epoch in range(500):
print("-" * 10)
print(f"epoch {epoch + 1}/{500}")
model.train()
epoch_loss = 0
step = 0
for batch_data in train_loader:
step += 1
inputs, labels = batch_data[0].to(device), batch_data[1].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_len = len(train_ds) // train_loader.batch_size
print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
writer.add_scalar("train_loss", loss.item(), epoch_len * epoch + step)
epoch_loss /= step
epoch_loss_values.append(epoch_loss)
print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")
if (epoch + 1) % val_interval == 0:
model.eval()
with torch.no_grad():
val_images = None
val_labels = None
val_outputs = None
for val_data in val_loader:
val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
roi_size = (448, 448)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
# compute metric for current iteration
dice_metric(y_pred=val_outputs, y=val_labels)
# aggregate the final mean dice result
metric = dice_metric.aggregate().item()
# reset the status for next validation round
dice_metric.reset()
metric_values.append(metric)
if metric > best_metric:
best_metric = metric
best_metric_epoch = epoch + 1
torch.save(model.state_dict(), "best_metric_model_segmentation2d_array.pth")
print("saved new best metric model")
print(
"current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}".format(
epoch + 1, metric, best_metric, best_metric_epoch
)
)
writer.add_scalar("val_mean_dice", metric, epoch + 1)
# plot the last model output as GIF image in TensorBoard with the corresponding image and label
plot_2d_or_3d_image(val_images, epoch + 1, writer, index=0, tag="image")
plot_2d_or_3d_image(val_labels, epoch + 1, writer, index=0, tag="label")
plot_2d_or_3d_image(val_outputs, epoch + 1, writer, index=0, tag="output")
print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}")
writer.close() |