File size: 9,352 Bytes
70e068a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
from glob import glob
import torch
from PIL import Image
from torch.utils.tensorboard import SummaryWriter

import monai
from monai.data import ArrayDataset, decollate_batch, DataLoader
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.transforms import (
    Activations,
    AsDiscrete,
    Compose,
    LoadImage,
    RandRotate90,
    ScaleIntensity,
    #AsChannelFirst

)
from monai.visualize import plot_2d_or_3d_image
from PIL import Image
import cv2
import tifffile
import os
# Preprocess

def convert_to_png(img_dir):
    # Lấy danh sách tệp tin trong thư mục ảnh
    img_files = [file for file in os.listdir(img_dir) if file.endswith(('.jpg', '.jpeg', '.png', '.tif'))]

    # Chuyển đổi từng ảnh sang định dạng .png
    for img_file in img_files:
        img_path = os.path.join(img_dir, img_file)
        if img_file.endswith('.tif'):
            # Đọc tệp .tif và chuyển đổi thành ảnh
            with tifffile.TiffFile(img_path) as tif:
                img = Image.fromarray(tif.asarray())
        else:
            # Đọc ảnh từ các định dạng khác
            img = Image.open(img_path)

        # Lưu ảnh dưới dạng .png
        png_path = os.path.join(img_dir, os.path.splitext(img_file)[0] + '.png')
        img.save(png_path)

convert_to_png("./tamp500/imgs")

images = sorted(glob(os.path.join("./tamp500/imgs", "*.png")))
segs = sorted(glob(os.path.join("./tamp500/masks", "*.png")))

def resize_images_and_masks(image_paths, mask_paths, output_dir, target_width, target_height):
    """
    Resize images and corresponding segmentation masks to the specified dimensions.

    Args:
    - image_paths (list): List of paths to the input images.
    - mask_paths (list): List of paths to the segmentation masks.
    - output_dir (str): Directory to save the resized images and masks.
    - target_width (int): Target width for resizing.
    - target_height (int): Target height for resizing.

    Returns:
    - resized_image_paths (list): List of paths to the resized images.
    - resized_mask_paths (list): List of paths to the resized segmentation masks.
    """
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    resized_image_dir = os.path.join(output_dir, 'resized_images')
    resized_mask_dir = os.path.join(output_dir, 'resized_masks')
    if not os.path.exists(resized_image_dir):
        os.makedirs(resized_image_dir)
    if not os.path.exists(resized_mask_dir):
        os.makedirs(resized_mask_dir)

    resized_image_paths = []
    resized_mask_paths = []
    for img_path, mask_path in zip(image_paths, mask_paths):
        # Read the image and mask
        img = cv2.imread(img_path)
        mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)

        # Resize the image
        resized_img = cv2.resize(img, (target_width, target_height))
        # Resize the mask
        resized_mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)

        # Extract the filename from the image path
        img_filename = os.path.basename(img_path)
        # Construct the output image path
        output_img_path = os.path.join(resized_image_dir, img_filename)
        # Write the resized image to the output path
        cv2.imwrite(output_img_path, resized_img)
        resized_image_paths.append(output_img_path)

        # Extract the filename from the mask path
        mask_filename = os.path.basename(mask_path)
        # Construct the output mask path
        output_mask_path = os.path.join(resized_mask_dir, mask_filename)
        # Write the resized mask to the output path
        cv2.imwrite(output_mask_path, resized_mask)
        resized_mask_paths.append(output_mask_path)

    return resized_image_paths, resized_mask_paths
images = sorted(glob(os.path.join("./tamp500/imgs", "*.png")))
masks = sorted(glob(os.path.join("./tamp500/masks", "*.png")))
output_directory = 'resized_'
target_width = 448
target_height = 448

resized_image_paths, resized_mask_paths = resize_images_and_masks(images, masks, output_directory, target_width, target_height)
images = sorted(glob(os.path.join("./resized_/resized_images", "*.png")))
segs = sorted(glob(os.path.join("./resized_/resized_masks", "*.png")))

from sklearn.model_selection import train_test_split
train_images,test_images,train_segs,test_segs = train_test_split(images,segs,test_size = 0.2,random_state = 42)

# define transforms for image and segmentation
train_imtrans = Compose(
    [
        LoadImage(image_only=True, ensure_channel_first=True),
        ScaleIntensity(),
        #RandSpatialCrop((224, 224), random_size=False),
        RandRotate90(prob=0.5, spatial_axes=(0, 1)),
    ]
)
train_segtrans = Compose(
    [
        LoadImage(image_only=True, ensure_channel_first=True),
        ScaleIntensity(),
        #RandSpatialCrop((224, 224), random_size=False),
        RandRotate90(prob=0.5, spatial_axes=(0, 1)),
    ]
)
val_imtrans = Compose([LoadImage(image_only=True, ensure_channel_first=True), ScaleIntensity()])
val_segtrans = Compose([LoadImage(image_only=True, ensure_channel_first=True), ScaleIntensity()])

# create a training data loader
train_ds = ArrayDataset(train_images, train_imtrans, train_segs, train_segtrans)
train_loader = DataLoader(train_ds, batch_size=4, shuffle=True, num_workers=2, pin_memory=torch.cuda.is_available())
# create a validation data loader
val_ds = ArrayDataset(test_images, val_imtrans, test_segs, val_segtrans)
val_loader = DataLoader(val_ds, batch_size=1, num_workers=2, pin_memory=torch.cuda.is_available())

dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)
post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
# create UNet, DiceLoss and Adam optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# model = monai.networks.nets.UNet(
#     spatial_dims=2,
#     in_channels=3,
#     out_channels=1,
#     channels=(16, 32, 64, 128, 256),
#     strides=(2, 2, 2, 2),
#     num_res_units=2,
# ).to(device)

model = monai.networks.nets.UNETR(
    spatial_dims=2,
    in_channels=3,
    out_channels=1,
    img_size =(448,448),
    #channels=(16, 32, 64, 128, 256),
    #strides=(2, 2, 2, 2),
    #num_res_units=2,
).to(device)

loss_function = monai.losses.DiceLoss(sigmoid=True)
optimizer = torch.optim.Adam(model.parameters(), 1e-3)

# start a typical PyTorch training
val_interval = 2
best_metric = -1
best_metric_epoch = -1
epoch_loss_values = list()
metric_values = list()
writer = SummaryWriter()
for epoch in range(500):
    print("-" * 10)
    print(f"epoch {epoch + 1}/{500}")
    model.train()
    epoch_loss = 0
    step = 0
    for batch_data in train_loader:
        step += 1
        inputs, labels = batch_data[0].to(device), batch_data[1].to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = loss_function(outputs, labels)
        loss.backward()
        optimizer.step()
        epoch_loss += loss.item()
        epoch_len = len(train_ds) // train_loader.batch_size
        print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
        writer.add_scalar("train_loss", loss.item(), epoch_len * epoch + step)
    epoch_loss /= step
    epoch_loss_values.append(epoch_loss)
    print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

    if (epoch + 1) % val_interval == 0:
        model.eval()
        with torch.no_grad():
            val_images = None
            val_labels = None
            val_outputs = None
            for val_data in val_loader:
                val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
                roi_size = (448, 448)
                sw_batch_size = 4
                val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
                val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
                # compute metric for current iteration
                dice_metric(y_pred=val_outputs, y=val_labels)
            # aggregate the final mean dice result
            metric = dice_metric.aggregate().item()
            # reset the status for next validation round
            dice_metric.reset()
            metric_values.append(metric)
            if metric > best_metric:
                best_metric = metric
                best_metric_epoch = epoch + 1
                torch.save(model.state_dict(), "best_metric_model_segmentation2d_array.pth")
                print("saved new best metric model")
            print(
                "current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}".format(
                    epoch + 1, metric, best_metric, best_metric_epoch
                )
            )
            writer.add_scalar("val_mean_dice", metric, epoch + 1)
            # plot the last model output as GIF image in TensorBoard with the corresponding image and label
            plot_2d_or_3d_image(val_images, epoch + 1, writer, index=0, tag="image")
            plot_2d_or_3d_image(val_labels, epoch + 1, writer, index=0, tag="label")
            plot_2d_or_3d_image(val_outputs, epoch + 1, writer, index=0, tag="output")

print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}")
writer.close()