File size: 1,859 Bytes
44168e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
from torch import nn

class Loss_VAE(nn.Module):
    def __init__(self):
        super().__init__()
        self.mse = nn.MSELoss(reduction='sum')

    def forward(self, recon_x, x, mu, log_var):
        mse = self.mse(recon_x, x)
        kld = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
        loss = mse + kld
        return loss
    

def DiceScore(
    y_pred: torch.Tensor,
    y: torch.Tensor,
    include_background: bool = True,
) -> torch.Tensor:
    """Computes Dice score metric from full size Tensor and collects average.
    Args:
        y_pred: input data to compute, typical segmentation model output.
            It must be one-hot format and first dim is batch, example shape: [16, 3, 32, 32]. The values
            should be binarized.
        y: ground truth to compute mean dice metric. It must be one-hot format and first dim is batch.
            The values should be binarized.
        include_background: whether to skip Dice computation on the first channel of
            the predicted output. Defaults to True.
    Returns:
        Dice scores per batch and per class, (shape [batch_size, num_classes]).
    Raises:
        ValueError: when `y_pred` and `y` have different shapes.
    """

    y = y.float()
    y_pred = y_pred.float()

    if y.shape != y_pred.shape:
        raise ValueError("y_pred and y should have same shapes.")

    # reducing only spatial dimensions (not batch nor channels)
    n_len = len(y_pred.shape)
    reduce_axis = list(range(2, n_len))
    intersection = torch.sum(y * y_pred, dim=reduce_axis)

    y_o = torch.sum(y, reduce_axis)
    y_pred_o = torch.sum(y_pred, dim=reduce_axis)
    denominator = y_o + y_pred_o

    return torch.where(
        denominator > 0,
        (2.0 * intersection) / denominator,
        torch.tensor(float("1"), device=y_o.device),
    )