File size: 10,188 Bytes
864c14f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
import pytorch_lightning as pl
import matplotlib.pyplot as plt
import csv
import torch
from monai.transforms import AsDiscrete, Activations, Compose, EnsureType
from models.SegTranVAE.SegTranVAE import SegTransVAE
from loss.loss import Loss_VAE, DiceScore
from monai.losses import DiceLoss
import pytorch_lightning as pl
from monai.inferers import sliding_window_inference
class BRATS(pl.LightningModule):
def __init__(self,train_loader,val_loader,test_loader, use_VAE = True, lr = 1e-4 ):
super().__init__()
self.train_loader = train_loader
self.val_loader = val_loader
self.test_loader = test_loader
self.use_vae = use_VAE
self.lr = lr
self.model = SegTransVAE((128, 128, 128), 8, 4, 3, 768, 8, 4, 3072, in_channels_vae=128, use_VAE = use_VAE)
self.loss_vae = Loss_VAE()
self.dice_loss = DiceLoss(to_onehot_y=False, sigmoid=True, squared_pred=True)
self.post_trans_images = Compose(
[EnsureType(),
Activations(sigmoid=True),
AsDiscrete(threshold_values=True),
]
)
self.best_val_dice = 0
self.training_step_outputs = []
self.val_step_loss = []
self.val_step_dice = []
self.val_step_dice_tc = []
self.val_step_dice_wt = []
self.val_step_dice_et = []
self.test_step_loss = []
self.test_step_dice = []
self.test_step_dice_tc = []
self.test_step_dice_wt = []
self.test_step_dice_et = []
def forward(self, x, is_validation = True):
return self.model(x, is_validation)
def training_step(self, batch, batch_index):
inputs, labels = (batch['image'], batch['label'])
if not self.use_vae:
outputs = self.forward(inputs, is_validation=False)
loss = self.dice_loss(outputs, labels)
else:
outputs, recon_batch, mu, sigma = self.forward(inputs, is_validation=False)
vae_loss = self.loss_vae(recon_batch, inputs, mu, sigma)
dice_loss = self.dice_loss(outputs, labels)
loss = dice_loss + 1/(4 * 128 * 128 * 128) * vae_loss
self.training_step_outputs.append(loss)
self.log('train/vae_loss', vae_loss)
self.log('train/dice_loss', dice_loss)
if batch_index == 10:
tensorboard = self.logger.experiment
fig, ax = plt.subplots(nrows=1, ncols=6, figsize=(10, 5))
ax[0].imshow(inputs.detach().cpu()[0][0][:, :, 80], cmap='gray')
ax[0].set_title("Input")
ax[1].imshow(recon_batch.detach().cpu().float()[0][0][:,:, 80], cmap='gray')
ax[1].set_title("Reconstruction")
ax[2].imshow(labels.detach().cpu().float()[0][0][:,:, 80], cmap='gray')
ax[2].set_title("Labels TC")
ax[3].imshow(outputs.sigmoid().detach().cpu().float()[0][0][:,:, 80], cmap='gray')
ax[3].set_title("TC")
ax[4].imshow(labels.detach().cpu().float()[0][2][:,:, 80], cmap='gray')
ax[4].set_title("Labels ET")
ax[5].imshow(outputs.sigmoid().detach().cpu().float()[0][2][:,:, 80], cmap='gray')
ax[5].set_title("ET")
tensorboard.add_figure('train_visualize', fig, self.current_epoch)
self.log('train/loss', loss)
return loss
def on_train_epoch_end(self):
## F1 Macro all epoch saving outputs and target per batch
# free up the memory
# --> HERE STEP 3 <--
epoch_average = torch.stack(self.training_step_outputs).mean()
self.log("training_epoch_average", epoch_average)
self.training_step_outputs.clear() # free memory
def validation_step(self, batch, batch_index):
inputs, labels = (batch['image'], batch['label'])
roi_size = (128, 128, 128)
sw_batch_size = 1
outputs = sliding_window_inference(
inputs, roi_size, sw_batch_size, self.model, overlap = 0.5)
loss = self.dice_loss(outputs, labels)
val_outputs = self.post_trans_images(outputs)
metric_tc = DiceScore(y_pred=val_outputs[:, 0:1], y=labels[:, 0:1], include_background = True)
metric_wt = DiceScore(y_pred=val_outputs[:, 1:2], y=labels[:, 1:2], include_background = True)
metric_et = DiceScore(y_pred=val_outputs[:, 2:3], y=labels[:, 2:3], include_background = True)
mean_val_dice = (metric_tc + metric_wt + metric_et)/3
self.val_step_loss.append(loss)
self.val_step_dice.append(mean_val_dice)
self.val_step_dice_tc.append(metric_tc)
self.val_step_dice_wt.append(metric_wt)
self.val_step_dice_et.append(metric_et)
return {'val_loss': loss, 'val_mean_dice': mean_val_dice, 'val_dice_tc': metric_tc,
'val_dice_wt': metric_wt, 'val_dice_et': metric_et}
def on_validation_epoch_end(self):
loss = torch.stack(self.val_step_loss).mean()
mean_val_dice = torch.stack(self.val_step_dice).mean()
metric_tc = torch.stack(self.val_step_dice_tc).mean()
metric_wt = torch.stack(self.val_step_dice_wt).mean()
metric_et = torch.stack(self.val_step_dice_et).mean()
self.log('val/Loss', loss)
self.log('val/MeanDiceScore', mean_val_dice)
self.log('val/DiceTC', metric_tc)
self.log('val/DiceWT', metric_wt)
self.log('val/DiceET', metric_et)
os.makedirs(self.logger.log_dir, exist_ok=True)
if self.current_epoch == 0:
with open('{}/metric_log.csv'.format(self.logger.log_dir), 'w') as f:
writer = csv.writer(f)
writer.writerow(['Epoch', 'Mean Dice Score', 'Dice TC', 'Dice WT', 'Dice ET'])
with open('{}/metric_log.csv'.format(self.logger.log_dir), 'a') as f:
writer = csv.writer(f)
writer.writerow([self.current_epoch, mean_val_dice.item(), metric_tc.item(), metric_wt.item(), metric_et.item()])
if mean_val_dice > self.best_val_dice:
self.best_val_dice = mean_val_dice
self.best_val_epoch = self.current_epoch
print(
f"\n Current epoch: {self.current_epoch} Current mean dice: {mean_val_dice:.4f}"
f" tc: {metric_tc:.4f} wt: {metric_wt:.4f} et: {metric_et:.4f}"
f"\n Best mean dice: {self.best_val_dice}"
f" at epoch: {self.best_val_epoch}"
)
self.val_step_loss.clear()
self.val_step_dice.clear()
self.val_step_dice_tc.clear()
self.val_step_dice_wt.clear()
self.val_step_dice_et.clear()
return {'val_MeanDiceScore': mean_val_dice}
def test_step(self, batch, batch_index):
inputs, labels = (batch['image'], batch['label'])
roi_size = (128, 128, 128)
sw_batch_size = 1
test_outputs = sliding_window_inference(
inputs, roi_size, sw_batch_size, self.forward, overlap = 0.5)
loss = self.dice_loss(test_outputs, labels)
test_outputs = self.post_trans_images(test_outputs)
metric_tc = DiceScore(y_pred=test_outputs[:, 0:1], y=labels[:, 0:1], include_background = True)
metric_wt = DiceScore(y_pred=test_outputs[:, 1:2], y=labels[:, 1:2], include_background = True)
metric_et = DiceScore(y_pred=test_outputs[:, 2:3], y=labels[:, 2:3], include_background = True)
mean_test_dice = (metric_tc + metric_wt + metric_et)/3
self.test_step_loss.append(loss)
self.test_step_dice.append(mean_test_dice)
self.test_step_dice_tc.append(metric_tc)
self.test_step_dice_wt.append(metric_wt)
self.test_step_dice_et.append(metric_et)
return {'test_loss': loss, 'test_mean_dice': mean_test_dice, 'test_dice_tc': metric_tc,
'test_dice_wt': metric_wt, 'test_dice_et': metric_et}
def test_epoch_end(self):
loss = torch.stack(self.test_step_loss).mean()
mean_test_dice = torch.stack(self.test_step_dice).mean()
metric_tc = torch.stack(self.test_step_dice_tc).mean()
metric_wt = torch.stack(self.test_step_dice_wt).mean()
metric_et = torch.stack(self.test_step_dice_et).mean()
self.log('test/Loss', loss)
self.log('test/MeanDiceScore', mean_test_dice)
self.log('test/DiceTC', metric_tc)
self.log('test/DiceWT', metric_wt)
self.log('test/DiceET', metric_et)
with open('{}/test_log.csv'.format(self.logger.log_dir), 'w') as f:
writer = csv.writer(f)
writer.writerow(["Mean Test Dice", "Dice TC", "Dice WT", "Dice ET"])
writer.writerow([mean_test_dice, metric_tc, metric_wt, metric_et])
self.test_step_loss.clear()
self.test_step_dice.clear()
self.test_step_dice_tc.clear()
self.test_step_dice_wt.clear()
self.test_step_dice_et.clear()
return {'test_MeanDiceScore': mean_test_dice}
def configure_optimizers(self):
optimizer = torch.optim.Adam(
self.model.parameters(), self.lr, weight_decay=1e-5, amsgrad=True
)
# optimizer = AdaBelief(self.model.parameters(),
# lr=self.lr, eps=1e-16,
# betas=(0.9,0.999), weight_decouple = True,
# rectify = False)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 200)
return [optimizer], [scheduler]
def train_dataloader(self):
return self.train_loader
def val_dataloader(self):
return self.val_loader
def test_dataloader(self):
return self.test_loader |