File size: 81,390 Bytes
bc20498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 |
'use strict';
/**
The default maximum length of a `TreeBuffer` node.
*/
const DefaultBufferLength = 1024;
let nextPropID = 0;
class Range {
constructor(from, to) {
this.from = from;
this.to = to;
}
}
/**
Each [node type](#common.NodeType) or [individual tree](#common.Tree)
can have metadata associated with it in props. Instances of this
class represent prop names.
*/
class NodeProp {
/**
Create a new node prop type.
*/
constructor(config = {}) {
this.id = nextPropID++;
this.perNode = !!config.perNode;
this.deserialize = config.deserialize || (() => {
throw new Error("This node type doesn't define a deserialize function");
});
}
/**
This is meant to be used with
[`NodeSet.extend`](#common.NodeSet.extend) or
[`LRParser.configure`](#lr.ParserConfig.props) to compute
prop values for each node type in the set. Takes a [match
object](#common.NodeType^match) or function that returns undefined
if the node type doesn't get this prop, and the prop's value if
it does.
*/
add(match) {
if (this.perNode)
throw new RangeError("Can't add per-node props to node types");
if (typeof match != "function")
match = NodeType.match(match);
return (type) => {
let result = match(type);
return result === undefined ? null : [this, result];
};
}
}
/**
Prop that is used to describe matching delimiters. For opening
delimiters, this holds an array of node names (written as a
space-separated string when declaring this prop in a grammar)
for the node types of closing delimiters that match it.
*/
NodeProp.closedBy = new NodeProp({ deserialize: str => str.split(" ") });
/**
The inverse of [`closedBy`](#common.NodeProp^closedBy). This is
attached to closing delimiters, holding an array of node names
of types of matching opening delimiters.
*/
NodeProp.openedBy = new NodeProp({ deserialize: str => str.split(" ") });
/**
Used to assign node types to groups (for example, all node
types that represent an expression could be tagged with an
`"Expression"` group).
*/
NodeProp.group = new NodeProp({ deserialize: str => str.split(" ") });
/**
Attached to nodes to indicate these should be
[displayed](https://codemirror.net/docs/ref/#language.syntaxTree)
in a bidirectional text isolate, so that direction-neutral
characters on their sides don't incorrectly get associated with
surrounding text. You'll generally want to set this for nodes
that contain arbitrary text, like strings and comments, and for
nodes that appear _inside_ arbitrary text, like HTML tags. When
not given a value, in a grammar declaration, defaults to
`"auto"`.
*/
NodeProp.isolate = new NodeProp({ deserialize: value => {
if (value && value != "rtl" && value != "ltr" && value != "auto")
throw new RangeError("Invalid value for isolate: " + value);
return value || "auto";
} });
/**
The hash of the [context](#lr.ContextTracker.constructor)
that the node was parsed in, if any. Used to limit reuse of
contextual nodes.
*/
NodeProp.contextHash = new NodeProp({ perNode: true });
/**
The distance beyond the end of the node that the tokenizer
looked ahead for any of the tokens inside the node. (The LR
parser only stores this when it is larger than 25, for
efficiency reasons.)
*/
NodeProp.lookAhead = new NodeProp({ perNode: true });
/**
This per-node prop is used to replace a given node, or part of a
node, with another tree. This is useful to include trees from
different languages in mixed-language parsers.
*/
NodeProp.mounted = new NodeProp({ perNode: true });
/**
A mounted tree, which can be [stored](#common.NodeProp^mounted) on
a tree node to indicate that parts of its content are
represented by another tree.
*/
class MountedTree {
constructor(
/**
The inner tree.
*/
tree,
/**
If this is null, this tree replaces the entire node (it will
be included in the regular iteration instead of its host
node). If not, only the given ranges are considered to be
covered by this tree. This is used for trees that are mixed in
a way that isn't strictly hierarchical. Such mounted trees are
only entered by [`resolveInner`](#common.Tree.resolveInner)
and [`enter`](#common.SyntaxNode.enter).
*/
overlay,
/**
The parser used to create this subtree.
*/
parser) {
this.tree = tree;
this.overlay = overlay;
this.parser = parser;
}
/**
@internal
*/
static get(tree) {
return tree && tree.props && tree.props[NodeProp.mounted.id];
}
}
const noProps = Object.create(null);
/**
Each node in a syntax tree has a node type associated with it.
*/
class NodeType {
/**
@internal
*/
constructor(
/**
The name of the node type. Not necessarily unique, but if the
grammar was written properly, different node types with the
same name within a node set should play the same semantic
role.
*/
name,
/**
@internal
*/
props,
/**
The id of this node in its set. Corresponds to the term ids
used in the parser.
*/
id,
/**
@internal
*/
flags = 0) {
this.name = name;
this.props = props;
this.id = id;
this.flags = flags;
}
/**
Define a node type.
*/
static define(spec) {
let props = spec.props && spec.props.length ? Object.create(null) : noProps;
let flags = (spec.top ? 1 /* NodeFlag.Top */ : 0) | (spec.skipped ? 2 /* NodeFlag.Skipped */ : 0) |
(spec.error ? 4 /* NodeFlag.Error */ : 0) | (spec.name == null ? 8 /* NodeFlag.Anonymous */ : 0);
let type = new NodeType(spec.name || "", props, spec.id, flags);
if (spec.props)
for (let src of spec.props) {
if (!Array.isArray(src))
src = src(type);
if (src) {
if (src[0].perNode)
throw new RangeError("Can't store a per-node prop on a node type");
props[src[0].id] = src[1];
}
}
return type;
}
/**
Retrieves a node prop for this type. Will return `undefined` if
the prop isn't present on this node.
*/
prop(prop) { return this.props[prop.id]; }
/**
True when this is the top node of a grammar.
*/
get isTop() { return (this.flags & 1 /* NodeFlag.Top */) > 0; }
/**
True when this node is produced by a skip rule.
*/
get isSkipped() { return (this.flags & 2 /* NodeFlag.Skipped */) > 0; }
/**
Indicates whether this is an error node.
*/
get isError() { return (this.flags & 4 /* NodeFlag.Error */) > 0; }
/**
When true, this node type doesn't correspond to a user-declared
named node, for example because it is used to cache repetition.
*/
get isAnonymous() { return (this.flags & 8 /* NodeFlag.Anonymous */) > 0; }
/**
Returns true when this node's name or one of its
[groups](#common.NodeProp^group) matches the given string.
*/
is(name) {
if (typeof name == 'string') {
if (this.name == name)
return true;
let group = this.prop(NodeProp.group);
return group ? group.indexOf(name) > -1 : false;
}
return this.id == name;
}
/**
Create a function from node types to arbitrary values by
specifying an object whose property names are node or
[group](#common.NodeProp^group) names. Often useful with
[`NodeProp.add`](#common.NodeProp.add). You can put multiple
names, separated by spaces, in a single property name to map
multiple node names to a single value.
*/
static match(map) {
let direct = Object.create(null);
for (let prop in map)
for (let name of prop.split(" "))
direct[name] = map[prop];
return (node) => {
for (let groups = node.prop(NodeProp.group), i = -1; i < (groups ? groups.length : 0); i++) {
let found = direct[i < 0 ? node.name : groups[i]];
if (found)
return found;
}
};
}
}
/**
An empty dummy node type to use when no actual type is available.
*/
NodeType.none = new NodeType("", Object.create(null), 0, 8 /* NodeFlag.Anonymous */);
/**
A node set holds a collection of node types. It is used to
compactly represent trees by storing their type ids, rather than a
full pointer to the type object, in a numeric array. Each parser
[has](#lr.LRParser.nodeSet) a node set, and [tree
buffers](#common.TreeBuffer) can only store collections of nodes
from the same set. A set can have a maximum of 2**16 (65536) node
types in it, so that the ids fit into 16-bit typed array slots.
*/
class NodeSet {
/**
Create a set with the given types. The `id` property of each
type should correspond to its position within the array.
*/
constructor(
/**
The node types in this set, by id.
*/
types) {
this.types = types;
for (let i = 0; i < types.length; i++)
if (types[i].id != i)
throw new RangeError("Node type ids should correspond to array positions when creating a node set");
}
/**
Create a copy of this set with some node properties added. The
arguments to this method can be created with
[`NodeProp.add`](#common.NodeProp.add).
*/
extend(...props) {
let newTypes = [];
for (let type of this.types) {
let newProps = null;
for (let source of props) {
let add = source(type);
if (add) {
if (!newProps)
newProps = Object.assign({}, type.props);
newProps[add[0].id] = add[1];
}
}
newTypes.push(newProps ? new NodeType(type.name, newProps, type.id, type.flags) : type);
}
return new NodeSet(newTypes);
}
}
const CachedNode = new WeakMap(), CachedInnerNode = new WeakMap();
/**
Options that control iteration. Can be combined with the `|`
operator to enable multiple ones.
*/
exports.IterMode = void 0;
(function (IterMode) {
/**
When enabled, iteration will only visit [`Tree`](#common.Tree)
objects, not nodes packed into
[`TreeBuffer`](#common.TreeBuffer)s.
*/
IterMode[IterMode["ExcludeBuffers"] = 1] = "ExcludeBuffers";
/**
Enable this to make iteration include anonymous nodes (such as
the nodes that wrap repeated grammar constructs into a balanced
tree).
*/
IterMode[IterMode["IncludeAnonymous"] = 2] = "IncludeAnonymous";
/**
By default, regular [mounted](#common.NodeProp^mounted) nodes
replace their base node in iteration. Enable this to ignore them
instead.
*/
IterMode[IterMode["IgnoreMounts"] = 4] = "IgnoreMounts";
/**
This option only applies in
[`enter`](#common.SyntaxNode.enter)-style methods. It tells the
library to not enter mounted overlays if one covers the given
position.
*/
IterMode[IterMode["IgnoreOverlays"] = 8] = "IgnoreOverlays";
})(exports.IterMode || (exports.IterMode = {}));
/**
A piece of syntax tree. There are two ways to approach these
trees: the way they are actually stored in memory, and the
convenient way.
Syntax trees are stored as a tree of `Tree` and `TreeBuffer`
objects. By packing detail information into `TreeBuffer` leaf
nodes, the representation is made a lot more memory-efficient.
However, when you want to actually work with tree nodes, this
representation is very awkward, so most client code will want to
use the [`TreeCursor`](#common.TreeCursor) or
[`SyntaxNode`](#common.SyntaxNode) interface instead, which provides
a view on some part of this data structure, and can be used to
move around to adjacent nodes.
*/
class Tree {
/**
Construct a new tree. See also [`Tree.build`](#common.Tree^build).
*/
constructor(
/**
The type of the top node.
*/
type,
/**
This node's child nodes.
*/
children,
/**
The positions (offsets relative to the start of this tree) of
the children.
*/
positions,
/**
The total length of this tree
*/
length,
/**
Per-node [node props](#common.NodeProp) to associate with this node.
*/
props) {
this.type = type;
this.children = children;
this.positions = positions;
this.length = length;
/**
@internal
*/
this.props = null;
if (props && props.length) {
this.props = Object.create(null);
for (let [prop, value] of props)
this.props[typeof prop == "number" ? prop : prop.id] = value;
}
}
/**
@internal
*/
toString() {
let mounted = MountedTree.get(this);
if (mounted && !mounted.overlay)
return mounted.tree.toString();
let children = "";
for (let ch of this.children) {
let str = ch.toString();
if (str) {
if (children)
children += ",";
children += str;
}
}
return !this.type.name ? children :
(/\W/.test(this.type.name) && !this.type.isError ? JSON.stringify(this.type.name) : this.type.name) +
(children.length ? "(" + children + ")" : "");
}
/**
Get a [tree cursor](#common.TreeCursor) positioned at the top of
the tree. Mode can be used to [control](#common.IterMode) which
nodes the cursor visits.
*/
cursor(mode = 0) {
return new TreeCursor(this.topNode, mode);
}
/**
Get a [tree cursor](#common.TreeCursor) pointing into this tree
at the given position and side (see
[`moveTo`](#common.TreeCursor.moveTo).
*/
cursorAt(pos, side = 0, mode = 0) {
let scope = CachedNode.get(this) || this.topNode;
let cursor = new TreeCursor(scope);
cursor.moveTo(pos, side);
CachedNode.set(this, cursor._tree);
return cursor;
}
/**
Get a [syntax node](#common.SyntaxNode) object for the top of the
tree.
*/
get topNode() {
return new TreeNode(this, 0, 0, null);
}
/**
Get the [syntax node](#common.SyntaxNode) at the given position.
If `side` is -1, this will move into nodes that end at the
position. If 1, it'll move into nodes that start at the
position. With 0, it'll only enter nodes that cover the position
from both sides.
Note that this will not enter
[overlays](#common.MountedTree.overlay), and you often want
[`resolveInner`](#common.Tree.resolveInner) instead.
*/
resolve(pos, side = 0) {
let node = resolveNode(CachedNode.get(this) || this.topNode, pos, side, false);
CachedNode.set(this, node);
return node;
}
/**
Like [`resolve`](#common.Tree.resolve), but will enter
[overlaid](#common.MountedTree.overlay) nodes, producing a syntax node
pointing into the innermost overlaid tree at the given position
(with parent links going through all parent structure, including
the host trees).
*/
resolveInner(pos, side = 0) {
let node = resolveNode(CachedInnerNode.get(this) || this.topNode, pos, side, true);
CachedInnerNode.set(this, node);
return node;
}
/**
In some situations, it can be useful to iterate through all
nodes around a position, including those in overlays that don't
directly cover the position. This method gives you an iterator
that will produce all nodes, from small to big, around the given
position.
*/
resolveStack(pos, side = 0) {
return stackIterator(this, pos, side);
}
/**
Iterate over the tree and its children, calling `enter` for any
node that touches the `from`/`to` region (if given) before
running over such a node's children, and `leave` (if given) when
leaving the node. When `enter` returns `false`, that node will
not have its children iterated over (or `leave` called).
*/
iterate(spec) {
let { enter, leave, from = 0, to = this.length } = spec;
let mode = spec.mode || 0, anon = (mode & exports.IterMode.IncludeAnonymous) > 0;
for (let c = this.cursor(mode | exports.IterMode.IncludeAnonymous);;) {
let entered = false;
if (c.from <= to && c.to >= from && (!anon && c.type.isAnonymous || enter(c) !== false)) {
if (c.firstChild())
continue;
entered = true;
}
for (;;) {
if (entered && leave && (anon || !c.type.isAnonymous))
leave(c);
if (c.nextSibling())
break;
if (!c.parent())
return;
entered = true;
}
}
}
/**
Get the value of the given [node prop](#common.NodeProp) for this
node. Works with both per-node and per-type props.
*/
prop(prop) {
return !prop.perNode ? this.type.prop(prop) : this.props ? this.props[prop.id] : undefined;
}
/**
Returns the node's [per-node props](#common.NodeProp.perNode) in a
format that can be passed to the [`Tree`](#common.Tree)
constructor.
*/
get propValues() {
let result = [];
if (this.props)
for (let id in this.props)
result.push([+id, this.props[id]]);
return result;
}
/**
Balance the direct children of this tree, producing a copy of
which may have children grouped into subtrees with type
[`NodeType.none`](#common.NodeType^none).
*/
balance(config = {}) {
return this.children.length <= 8 /* Balance.BranchFactor */ ? this :
balanceRange(NodeType.none, this.children, this.positions, 0, this.children.length, 0, this.length, (children, positions, length) => new Tree(this.type, children, positions, length, this.propValues), config.makeTree || ((children, positions, length) => new Tree(NodeType.none, children, positions, length)));
}
/**
Build a tree from a postfix-ordered buffer of node information,
or a cursor over such a buffer.
*/
static build(data) { return buildTree(data); }
}
/**
The empty tree
*/
Tree.empty = new Tree(NodeType.none, [], [], 0);
class FlatBufferCursor {
constructor(buffer, index) {
this.buffer = buffer;
this.index = index;
}
get id() { return this.buffer[this.index - 4]; }
get start() { return this.buffer[this.index - 3]; }
get end() { return this.buffer[this.index - 2]; }
get size() { return this.buffer[this.index - 1]; }
get pos() { return this.index; }
next() { this.index -= 4; }
fork() { return new FlatBufferCursor(this.buffer, this.index); }
}
/**
Tree buffers contain (type, start, end, endIndex) quads for each
node. In such a buffer, nodes are stored in prefix order (parents
before children, with the endIndex of the parent indicating which
children belong to it).
*/
class TreeBuffer {
/**
Create a tree buffer.
*/
constructor(
/**
The buffer's content.
*/
buffer,
/**
The total length of the group of nodes in the buffer.
*/
length,
/**
The node set used in this buffer.
*/
set) {
this.buffer = buffer;
this.length = length;
this.set = set;
}
/**
@internal
*/
get type() { return NodeType.none; }
/**
@internal
*/
toString() {
let result = [];
for (let index = 0; index < this.buffer.length;) {
result.push(this.childString(index));
index = this.buffer[index + 3];
}
return result.join(",");
}
/**
@internal
*/
childString(index) {
let id = this.buffer[index], endIndex = this.buffer[index + 3];
let type = this.set.types[id], result = type.name;
if (/\W/.test(result) && !type.isError)
result = JSON.stringify(result);
index += 4;
if (endIndex == index)
return result;
let children = [];
while (index < endIndex) {
children.push(this.childString(index));
index = this.buffer[index + 3];
}
return result + "(" + children.join(",") + ")";
}
/**
@internal
*/
findChild(startIndex, endIndex, dir, pos, side) {
let { buffer } = this, pick = -1;
for (let i = startIndex; i != endIndex; i = buffer[i + 3]) {
if (checkSide(side, pos, buffer[i + 1], buffer[i + 2])) {
pick = i;
if (dir > 0)
break;
}
}
return pick;
}
/**
@internal
*/
slice(startI, endI, from) {
let b = this.buffer;
let copy = new Uint16Array(endI - startI), len = 0;
for (let i = startI, j = 0; i < endI;) {
copy[j++] = b[i++];
copy[j++] = b[i++] - from;
let to = copy[j++] = b[i++] - from;
copy[j++] = b[i++] - startI;
len = Math.max(len, to);
}
return new TreeBuffer(copy, len, this.set);
}
}
function checkSide(side, pos, from, to) {
switch (side) {
case -2 /* Side.Before */: return from < pos;
case -1 /* Side.AtOrBefore */: return to >= pos && from < pos;
case 0 /* Side.Around */: return from < pos && to > pos;
case 1 /* Side.AtOrAfter */: return from <= pos && to > pos;
case 2 /* Side.After */: return to > pos;
case 4 /* Side.DontCare */: return true;
}
}
function resolveNode(node, pos, side, overlays) {
var _a;
// Move up to a node that actually holds the position, if possible
while (node.from == node.to ||
(side < 1 ? node.from >= pos : node.from > pos) ||
(side > -1 ? node.to <= pos : node.to < pos)) {
let parent = !overlays && node instanceof TreeNode && node.index < 0 ? null : node.parent;
if (!parent)
return node;
node = parent;
}
let mode = overlays ? 0 : exports.IterMode.IgnoreOverlays;
// Must go up out of overlays when those do not overlap with pos
if (overlays)
for (let scan = node, parent = scan.parent; parent; scan = parent, parent = scan.parent) {
if (scan instanceof TreeNode && scan.index < 0 && ((_a = parent.enter(pos, side, mode)) === null || _a === void 0 ? void 0 : _a.from) != scan.from)
node = parent;
}
for (;;) {
let inner = node.enter(pos, side, mode);
if (!inner)
return node;
node = inner;
}
}
class BaseNode {
cursor(mode = 0) { return new TreeCursor(this, mode); }
getChild(type, before = null, after = null) {
let r = getChildren(this, type, before, after);
return r.length ? r[0] : null;
}
getChildren(type, before = null, after = null) {
return getChildren(this, type, before, after);
}
resolve(pos, side = 0) {
return resolveNode(this, pos, side, false);
}
resolveInner(pos, side = 0) {
return resolveNode(this, pos, side, true);
}
matchContext(context) {
return matchNodeContext(this, context);
}
enterUnfinishedNodesBefore(pos) {
let scan = this.childBefore(pos), node = this;
while (scan) {
let last = scan.lastChild;
if (!last || last.to != scan.to)
break;
if (last.type.isError && last.from == last.to) {
node = scan;
scan = last.prevSibling;
}
else {
scan = last;
}
}
return node;
}
get node() { return this; }
get next() { return this.parent; }
}
class TreeNode extends BaseNode {
constructor(_tree, from,
// Index in parent node, set to -1 if the node is not a direct child of _parent.node (overlay)
index, _parent) {
super();
this._tree = _tree;
this.from = from;
this.index = index;
this._parent = _parent;
}
get type() { return this._tree.type; }
get name() { return this._tree.type.name; }
get to() { return this.from + this._tree.length; }
nextChild(i, dir, pos, side, mode = 0) {
for (let parent = this;;) {
for (let { children, positions } = parent._tree, e = dir > 0 ? children.length : -1; i != e; i += dir) {
let next = children[i], start = positions[i] + parent.from;
if (!checkSide(side, pos, start, start + next.length))
continue;
if (next instanceof TreeBuffer) {
if (mode & exports.IterMode.ExcludeBuffers)
continue;
let index = next.findChild(0, next.buffer.length, dir, pos - start, side);
if (index > -1)
return new BufferNode(new BufferContext(parent, next, i, start), null, index);
}
else if ((mode & exports.IterMode.IncludeAnonymous) || (!next.type.isAnonymous || hasChild(next))) {
let mounted;
if (!(mode & exports.IterMode.IgnoreMounts) && (mounted = MountedTree.get(next)) && !mounted.overlay)
return new TreeNode(mounted.tree, start, i, parent);
let inner = new TreeNode(next, start, i, parent);
return (mode & exports.IterMode.IncludeAnonymous) || !inner.type.isAnonymous ? inner
: inner.nextChild(dir < 0 ? next.children.length - 1 : 0, dir, pos, side);
}
}
if ((mode & exports.IterMode.IncludeAnonymous) || !parent.type.isAnonymous)
return null;
if (parent.index >= 0)
i = parent.index + dir;
else
i = dir < 0 ? -1 : parent._parent._tree.children.length;
parent = parent._parent;
if (!parent)
return null;
}
}
get firstChild() { return this.nextChild(0, 1, 0, 4 /* Side.DontCare */); }
get lastChild() { return this.nextChild(this._tree.children.length - 1, -1, 0, 4 /* Side.DontCare */); }
childAfter(pos) { return this.nextChild(0, 1, pos, 2 /* Side.After */); }
childBefore(pos) { return this.nextChild(this._tree.children.length - 1, -1, pos, -2 /* Side.Before */); }
enter(pos, side, mode = 0) {
let mounted;
if (!(mode & exports.IterMode.IgnoreOverlays) && (mounted = MountedTree.get(this._tree)) && mounted.overlay) {
let rPos = pos - this.from;
for (let { from, to } of mounted.overlay) {
if ((side > 0 ? from <= rPos : from < rPos) &&
(side < 0 ? to >= rPos : to > rPos))
return new TreeNode(mounted.tree, mounted.overlay[0].from + this.from, -1, this);
}
}
return this.nextChild(0, 1, pos, side, mode);
}
nextSignificantParent() {
let val = this;
while (val.type.isAnonymous && val._parent)
val = val._parent;
return val;
}
get parent() {
return this._parent ? this._parent.nextSignificantParent() : null;
}
get nextSibling() {
return this._parent && this.index >= 0 ? this._parent.nextChild(this.index + 1, 1, 0, 4 /* Side.DontCare */) : null;
}
get prevSibling() {
return this._parent && this.index >= 0 ? this._parent.nextChild(this.index - 1, -1, 0, 4 /* Side.DontCare */) : null;
}
get tree() { return this._tree; }
toTree() { return this._tree; }
/**
@internal
*/
toString() { return this._tree.toString(); }
}
function getChildren(node, type, before, after) {
let cur = node.cursor(), result = [];
if (!cur.firstChild())
return result;
if (before != null)
for (let found = false; !found;) {
found = cur.type.is(before);
if (!cur.nextSibling())
return result;
}
for (;;) {
if (after != null && cur.type.is(after))
return result;
if (cur.type.is(type))
result.push(cur.node);
if (!cur.nextSibling())
return after == null ? result : [];
}
}
function matchNodeContext(node, context, i = context.length - 1) {
for (let p = node.parent; i >= 0; p = p.parent) {
if (!p)
return false;
if (!p.type.isAnonymous) {
if (context[i] && context[i] != p.name)
return false;
i--;
}
}
return true;
}
class BufferContext {
constructor(parent, buffer, index, start) {
this.parent = parent;
this.buffer = buffer;
this.index = index;
this.start = start;
}
}
class BufferNode extends BaseNode {
get name() { return this.type.name; }
get from() { return this.context.start + this.context.buffer.buffer[this.index + 1]; }
get to() { return this.context.start + this.context.buffer.buffer[this.index + 2]; }
constructor(context, _parent, index) {
super();
this.context = context;
this._parent = _parent;
this.index = index;
this.type = context.buffer.set.types[context.buffer.buffer[index]];
}
child(dir, pos, side) {
let { buffer } = this.context;
let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], dir, pos - this.context.start, side);
return index < 0 ? null : new BufferNode(this.context, this, index);
}
get firstChild() { return this.child(1, 0, 4 /* Side.DontCare */); }
get lastChild() { return this.child(-1, 0, 4 /* Side.DontCare */); }
childAfter(pos) { return this.child(1, pos, 2 /* Side.After */); }
childBefore(pos) { return this.child(-1, pos, -2 /* Side.Before */); }
enter(pos, side, mode = 0) {
if (mode & exports.IterMode.ExcludeBuffers)
return null;
let { buffer } = this.context;
let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], side > 0 ? 1 : -1, pos - this.context.start, side);
return index < 0 ? null : new BufferNode(this.context, this, index);
}
get parent() {
return this._parent || this.context.parent.nextSignificantParent();
}
externalSibling(dir) {
return this._parent ? null : this.context.parent.nextChild(this.context.index + dir, dir, 0, 4 /* Side.DontCare */);
}
get nextSibling() {
let { buffer } = this.context;
let after = buffer.buffer[this.index + 3];
if (after < (this._parent ? buffer.buffer[this._parent.index + 3] : buffer.buffer.length))
return new BufferNode(this.context, this._parent, after);
return this.externalSibling(1);
}
get prevSibling() {
let { buffer } = this.context;
let parentStart = this._parent ? this._parent.index + 4 : 0;
if (this.index == parentStart)
return this.externalSibling(-1);
return new BufferNode(this.context, this._parent, buffer.findChild(parentStart, this.index, -1, 0, 4 /* Side.DontCare */));
}
get tree() { return null; }
toTree() {
let children = [], positions = [];
let { buffer } = this.context;
let startI = this.index + 4, endI = buffer.buffer[this.index + 3];
if (endI > startI) {
let from = buffer.buffer[this.index + 1];
children.push(buffer.slice(startI, endI, from));
positions.push(0);
}
return new Tree(this.type, children, positions, this.to - this.from);
}
/**
@internal
*/
toString() { return this.context.buffer.childString(this.index); }
}
function iterStack(heads) {
if (!heads.length)
return null;
let pick = 0, picked = heads[0];
for (let i = 1; i < heads.length; i++) {
let node = heads[i];
if (node.from > picked.from || node.to < picked.to) {
picked = node;
pick = i;
}
}
let next = picked instanceof TreeNode && picked.index < 0 ? null : picked.parent;
let newHeads = heads.slice();
if (next)
newHeads[pick] = next;
else
newHeads.splice(pick, 1);
return new StackIterator(newHeads, picked);
}
class StackIterator {
constructor(heads, node) {
this.heads = heads;
this.node = node;
}
get next() { return iterStack(this.heads); }
}
function stackIterator(tree, pos, side) {
let inner = tree.resolveInner(pos, side), layers = null;
for (let scan = inner instanceof TreeNode ? inner : inner.context.parent; scan; scan = scan.parent) {
if (scan.index < 0) { // This is an overlay root
let parent = scan.parent;
(layers || (layers = [inner])).push(parent.resolve(pos, side));
scan = parent;
}
else {
let mount = MountedTree.get(scan.tree);
// Relevant overlay branching off
if (mount && mount.overlay && mount.overlay[0].from <= pos && mount.overlay[mount.overlay.length - 1].to >= pos) {
let root = new TreeNode(mount.tree, mount.overlay[0].from + scan.from, -1, scan);
(layers || (layers = [inner])).push(resolveNode(root, pos, side, false));
}
}
}
return layers ? iterStack(layers) : inner;
}
/**
A tree cursor object focuses on a given node in a syntax tree, and
allows you to move to adjacent nodes.
*/
class TreeCursor {
/**
Shorthand for `.type.name`.
*/
get name() { return this.type.name; }
/**
@internal
*/
constructor(node,
/**
@internal
*/
mode = 0) {
this.mode = mode;
/**
@internal
*/
this.buffer = null;
this.stack = [];
/**
@internal
*/
this.index = 0;
this.bufferNode = null;
if (node instanceof TreeNode) {
this.yieldNode(node);
}
else {
this._tree = node.context.parent;
this.buffer = node.context;
for (let n = node._parent; n; n = n._parent)
this.stack.unshift(n.index);
this.bufferNode = node;
this.yieldBuf(node.index);
}
}
yieldNode(node) {
if (!node)
return false;
this._tree = node;
this.type = node.type;
this.from = node.from;
this.to = node.to;
return true;
}
yieldBuf(index, type) {
this.index = index;
let { start, buffer } = this.buffer;
this.type = type || buffer.set.types[buffer.buffer[index]];
this.from = start + buffer.buffer[index + 1];
this.to = start + buffer.buffer[index + 2];
return true;
}
/**
@internal
*/
yield(node) {
if (!node)
return false;
if (node instanceof TreeNode) {
this.buffer = null;
return this.yieldNode(node);
}
this.buffer = node.context;
return this.yieldBuf(node.index, node.type);
}
/**
@internal
*/
toString() {
return this.buffer ? this.buffer.buffer.childString(this.index) : this._tree.toString();
}
/**
@internal
*/
enterChild(dir, pos, side) {
if (!this.buffer)
return this.yield(this._tree.nextChild(dir < 0 ? this._tree._tree.children.length - 1 : 0, dir, pos, side, this.mode));
let { buffer } = this.buffer;
let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], dir, pos - this.buffer.start, side);
if (index < 0)
return false;
this.stack.push(this.index);
return this.yieldBuf(index);
}
/**
Move the cursor to this node's first child. When this returns
false, the node has no child, and the cursor has not been moved.
*/
firstChild() { return this.enterChild(1, 0, 4 /* Side.DontCare */); }
/**
Move the cursor to this node's last child.
*/
lastChild() { return this.enterChild(-1, 0, 4 /* Side.DontCare */); }
/**
Move the cursor to the first child that ends after `pos`.
*/
childAfter(pos) { return this.enterChild(1, pos, 2 /* Side.After */); }
/**
Move to the last child that starts before `pos`.
*/
childBefore(pos) { return this.enterChild(-1, pos, -2 /* Side.Before */); }
/**
Move the cursor to the child around `pos`. If side is -1 the
child may end at that position, when 1 it may start there. This
will also enter [overlaid](#common.MountedTree.overlay)
[mounted](#common.NodeProp^mounted) trees unless `overlays` is
set to false.
*/
enter(pos, side, mode = this.mode) {
if (!this.buffer)
return this.yield(this._tree.enter(pos, side, mode));
return mode & exports.IterMode.ExcludeBuffers ? false : this.enterChild(1, pos, side);
}
/**
Move to the node's parent node, if this isn't the top node.
*/
parent() {
if (!this.buffer)
return this.yieldNode((this.mode & exports.IterMode.IncludeAnonymous) ? this._tree._parent : this._tree.parent);
if (this.stack.length)
return this.yieldBuf(this.stack.pop());
let parent = (this.mode & exports.IterMode.IncludeAnonymous) ? this.buffer.parent : this.buffer.parent.nextSignificantParent();
this.buffer = null;
return this.yieldNode(parent);
}
/**
@internal
*/
sibling(dir) {
if (!this.buffer)
return !this._tree._parent ? false
: this.yield(this._tree.index < 0 ? null
: this._tree._parent.nextChild(this._tree.index + dir, dir, 0, 4 /* Side.DontCare */, this.mode));
let { buffer } = this.buffer, d = this.stack.length - 1;
if (dir < 0) {
let parentStart = d < 0 ? 0 : this.stack[d] + 4;
if (this.index != parentStart)
return this.yieldBuf(buffer.findChild(parentStart, this.index, -1, 0, 4 /* Side.DontCare */));
}
else {
let after = buffer.buffer[this.index + 3];
if (after < (d < 0 ? buffer.buffer.length : buffer.buffer[this.stack[d] + 3]))
return this.yieldBuf(after);
}
return d < 0 ? this.yield(this.buffer.parent.nextChild(this.buffer.index + dir, dir, 0, 4 /* Side.DontCare */, this.mode)) : false;
}
/**
Move to this node's next sibling, if any.
*/
nextSibling() { return this.sibling(1); }
/**
Move to this node's previous sibling, if any.
*/
prevSibling() { return this.sibling(-1); }
atLastNode(dir) {
let index, parent, { buffer } = this;
if (buffer) {
if (dir > 0) {
if (this.index < buffer.buffer.buffer.length)
return false;
}
else {
for (let i = 0; i < this.index; i++)
if (buffer.buffer.buffer[i + 3] < this.index)
return false;
}
({ index, parent } = buffer);
}
else {
({ index, _parent: parent } = this._tree);
}
for (; parent; { index, _parent: parent } = parent) {
if (index > -1)
for (let i = index + dir, e = dir < 0 ? -1 : parent._tree.children.length; i != e; i += dir) {
let child = parent._tree.children[i];
if ((this.mode & exports.IterMode.IncludeAnonymous) ||
child instanceof TreeBuffer ||
!child.type.isAnonymous ||
hasChild(child))
return false;
}
}
return true;
}
move(dir, enter) {
if (enter && this.enterChild(dir, 0, 4 /* Side.DontCare */))
return true;
for (;;) {
if (this.sibling(dir))
return true;
if (this.atLastNode(dir) || !this.parent())
return false;
}
}
/**
Move to the next node in a
[pre-order](https://en.wikipedia.org/wiki/Tree_traversal#Pre-order,_NLR)
traversal, going from a node to its first child or, if the
current node is empty or `enter` is false, its next sibling or
the next sibling of the first parent node that has one.
*/
next(enter = true) { return this.move(1, enter); }
/**
Move to the next node in a last-to-first pre-order traveral. A
node is followed by its last child or, if it has none, its
previous sibling or the previous sibling of the first parent
node that has one.
*/
prev(enter = true) { return this.move(-1, enter); }
/**
Move the cursor to the innermost node that covers `pos`. If
`side` is -1, it will enter nodes that end at `pos`. If it is 1,
it will enter nodes that start at `pos`.
*/
moveTo(pos, side = 0) {
// Move up to a node that actually holds the position, if possible
while (this.from == this.to ||
(side < 1 ? this.from >= pos : this.from > pos) ||
(side > -1 ? this.to <= pos : this.to < pos))
if (!this.parent())
break;
// Then scan down into child nodes as far as possible
while (this.enterChild(1, pos, side)) { }
return this;
}
/**
Get a [syntax node](#common.SyntaxNode) at the cursor's current
position.
*/
get node() {
if (!this.buffer)
return this._tree;
let cache = this.bufferNode, result = null, depth = 0;
if (cache && cache.context == this.buffer) {
scan: for (let index = this.index, d = this.stack.length; d >= 0;) {
for (let c = cache; c; c = c._parent)
if (c.index == index) {
if (index == this.index)
return c;
result = c;
depth = d + 1;
break scan;
}
index = this.stack[--d];
}
}
for (let i = depth; i < this.stack.length; i++)
result = new BufferNode(this.buffer, result, this.stack[i]);
return this.bufferNode = new BufferNode(this.buffer, result, this.index);
}
/**
Get the [tree](#common.Tree) that represents the current node, if
any. Will return null when the node is in a [tree
buffer](#common.TreeBuffer).
*/
get tree() {
return this.buffer ? null : this._tree._tree;
}
/**
Iterate over the current node and all its descendants, calling
`enter` when entering a node and `leave`, if given, when leaving
one. When `enter` returns `false`, any children of that node are
skipped, and `leave` isn't called for it.
*/
iterate(enter, leave) {
for (let depth = 0;;) {
let mustLeave = false;
if (this.type.isAnonymous || enter(this) !== false) {
if (this.firstChild()) {
depth++;
continue;
}
if (!this.type.isAnonymous)
mustLeave = true;
}
for (;;) {
if (mustLeave && leave)
leave(this);
mustLeave = this.type.isAnonymous;
if (this.nextSibling())
break;
if (!depth)
return;
this.parent();
depth--;
mustLeave = true;
}
}
}
/**
Test whether the current node matches a given context—a sequence
of direct parent node names. Empty strings in the context array
are treated as wildcards.
*/
matchContext(context) {
if (!this.buffer)
return matchNodeContext(this.node, context);
let { buffer } = this.buffer, { types } = buffer.set;
for (let i = context.length - 1, d = this.stack.length - 1; i >= 0; d--) {
if (d < 0)
return matchNodeContext(this.node, context, i);
let type = types[buffer.buffer[this.stack[d]]];
if (!type.isAnonymous) {
if (context[i] && context[i] != type.name)
return false;
i--;
}
}
return true;
}
}
function hasChild(tree) {
return tree.children.some(ch => ch instanceof TreeBuffer || !ch.type.isAnonymous || hasChild(ch));
}
function buildTree(data) {
var _a;
let { buffer, nodeSet, maxBufferLength = DefaultBufferLength, reused = [], minRepeatType = nodeSet.types.length } = data;
let cursor = Array.isArray(buffer) ? new FlatBufferCursor(buffer, buffer.length) : buffer;
let types = nodeSet.types;
let contextHash = 0, lookAhead = 0;
function takeNode(parentStart, minPos, children, positions, inRepeat, depth) {
let { id, start, end, size } = cursor;
let lookAheadAtStart = lookAhead;
while (size < 0) {
cursor.next();
if (size == -1 /* SpecialRecord.Reuse */) {
let node = reused[id];
children.push(node);
positions.push(start - parentStart);
return;
}
else if (size == -3 /* SpecialRecord.ContextChange */) { // Context change
contextHash = id;
return;
}
else if (size == -4 /* SpecialRecord.LookAhead */) {
lookAhead = id;
return;
}
else {
throw new RangeError(`Unrecognized record size: ${size}`);
}
}
let type = types[id], node, buffer;
let startPos = start - parentStart;
if (end - start <= maxBufferLength && (buffer = findBufferSize(cursor.pos - minPos, inRepeat))) {
// Small enough for a buffer, and no reused nodes inside
let data = new Uint16Array(buffer.size - buffer.skip);
let endPos = cursor.pos - buffer.size, index = data.length;
while (cursor.pos > endPos)
index = copyToBuffer(buffer.start, data, index);
node = new TreeBuffer(data, end - buffer.start, nodeSet);
startPos = buffer.start - parentStart;
}
else { // Make it a node
let endPos = cursor.pos - size;
cursor.next();
let localChildren = [], localPositions = [];
let localInRepeat = id >= minRepeatType ? id : -1;
let lastGroup = 0, lastEnd = end;
while (cursor.pos > endPos) {
if (localInRepeat >= 0 && cursor.id == localInRepeat && cursor.size >= 0) {
if (cursor.end <= lastEnd - maxBufferLength) {
makeRepeatLeaf(localChildren, localPositions, start, lastGroup, cursor.end, lastEnd, localInRepeat, lookAheadAtStart);
lastGroup = localChildren.length;
lastEnd = cursor.end;
}
cursor.next();
}
else if (depth > 2500 /* CutOff.Depth */) {
takeFlatNode(start, endPos, localChildren, localPositions);
}
else {
takeNode(start, endPos, localChildren, localPositions, localInRepeat, depth + 1);
}
}
if (localInRepeat >= 0 && lastGroup > 0 && lastGroup < localChildren.length)
makeRepeatLeaf(localChildren, localPositions, start, lastGroup, start, lastEnd, localInRepeat, lookAheadAtStart);
localChildren.reverse();
localPositions.reverse();
if (localInRepeat > -1 && lastGroup > 0) {
let make = makeBalanced(type);
node = balanceRange(type, localChildren, localPositions, 0, localChildren.length, 0, end - start, make, make);
}
else {
node = makeTree(type, localChildren, localPositions, end - start, lookAheadAtStart - end);
}
}
children.push(node);
positions.push(startPos);
}
function takeFlatNode(parentStart, minPos, children, positions) {
let nodes = []; // Temporary, inverted array of leaf nodes found, with absolute positions
let nodeCount = 0, stopAt = -1;
while (cursor.pos > minPos) {
let { id, start, end, size } = cursor;
if (size > 4) { // Not a leaf
cursor.next();
}
else if (stopAt > -1 && start < stopAt) {
break;
}
else {
if (stopAt < 0)
stopAt = end - maxBufferLength;
nodes.push(id, start, end);
nodeCount++;
cursor.next();
}
}
if (nodeCount) {
let buffer = new Uint16Array(nodeCount * 4);
let start = nodes[nodes.length - 2];
for (let i = nodes.length - 3, j = 0; i >= 0; i -= 3) {
buffer[j++] = nodes[i];
buffer[j++] = nodes[i + 1] - start;
buffer[j++] = nodes[i + 2] - start;
buffer[j++] = j;
}
children.push(new TreeBuffer(buffer, nodes[2] - start, nodeSet));
positions.push(start - parentStart);
}
}
function makeBalanced(type) {
return (children, positions, length) => {
let lookAhead = 0, lastI = children.length - 1, last, lookAheadProp;
if (lastI >= 0 && (last = children[lastI]) instanceof Tree) {
if (!lastI && last.type == type && last.length == length)
return last;
if (lookAheadProp = last.prop(NodeProp.lookAhead))
lookAhead = positions[lastI] + last.length + lookAheadProp;
}
return makeTree(type, children, positions, length, lookAhead);
};
}
function makeRepeatLeaf(children, positions, base, i, from, to, type, lookAhead) {
let localChildren = [], localPositions = [];
while (children.length > i) {
localChildren.push(children.pop());
localPositions.push(positions.pop() + base - from);
}
children.push(makeTree(nodeSet.types[type], localChildren, localPositions, to - from, lookAhead - to));
positions.push(from - base);
}
function makeTree(type, children, positions, length, lookAhead = 0, props) {
if (contextHash) {
let pair = [NodeProp.contextHash, contextHash];
props = props ? [pair].concat(props) : [pair];
}
if (lookAhead > 25) {
let pair = [NodeProp.lookAhead, lookAhead];
props = props ? [pair].concat(props) : [pair];
}
return new Tree(type, children, positions, length, props);
}
function findBufferSize(maxSize, inRepeat) {
// Scan through the buffer to find previous siblings that fit
// together in a TreeBuffer, and don't contain any reused nodes
// (which can't be stored in a buffer).
// If `inRepeat` is > -1, ignore node boundaries of that type for
// nesting, but make sure the end falls either at the start
// (`maxSize`) or before such a node.
let fork = cursor.fork();
let size = 0, start = 0, skip = 0, minStart = fork.end - maxBufferLength;
let result = { size: 0, start: 0, skip: 0 };
scan: for (let minPos = fork.pos - maxSize; fork.pos > minPos;) {
let nodeSize = fork.size;
// Pretend nested repeat nodes of the same type don't exist
if (fork.id == inRepeat && nodeSize >= 0) {
// Except that we store the current state as a valid return
// value.
result.size = size;
result.start = start;
result.skip = skip;
skip += 4;
size += 4;
fork.next();
continue;
}
let startPos = fork.pos - nodeSize;
if (nodeSize < 0 || startPos < minPos || fork.start < minStart)
break;
let localSkipped = fork.id >= minRepeatType ? 4 : 0;
let nodeStart = fork.start;
fork.next();
while (fork.pos > startPos) {
if (fork.size < 0) {
if (fork.size == -3 /* SpecialRecord.ContextChange */)
localSkipped += 4;
else
break scan;
}
else if (fork.id >= minRepeatType) {
localSkipped += 4;
}
fork.next();
}
start = nodeStart;
size += nodeSize;
skip += localSkipped;
}
if (inRepeat < 0 || size == maxSize) {
result.size = size;
result.start = start;
result.skip = skip;
}
return result.size > 4 ? result : undefined;
}
function copyToBuffer(bufferStart, buffer, index) {
let { id, start, end, size } = cursor;
cursor.next();
if (size >= 0 && id < minRepeatType) {
let startIndex = index;
if (size > 4) {
let endPos = cursor.pos - (size - 4);
while (cursor.pos > endPos)
index = copyToBuffer(bufferStart, buffer, index);
}
buffer[--index] = startIndex;
buffer[--index] = end - bufferStart;
buffer[--index] = start - bufferStart;
buffer[--index] = id;
}
else if (size == -3 /* SpecialRecord.ContextChange */) {
contextHash = id;
}
else if (size == -4 /* SpecialRecord.LookAhead */) {
lookAhead = id;
}
return index;
}
let children = [], positions = [];
while (cursor.pos > 0)
takeNode(data.start || 0, data.bufferStart || 0, children, positions, -1, 0);
let length = (_a = data.length) !== null && _a !== void 0 ? _a : (children.length ? positions[0] + children[0].length : 0);
return new Tree(types[data.topID], children.reverse(), positions.reverse(), length);
}
const nodeSizeCache = new WeakMap;
function nodeSize(balanceType, node) {
if (!balanceType.isAnonymous || node instanceof TreeBuffer || node.type != balanceType)
return 1;
let size = nodeSizeCache.get(node);
if (size == null) {
size = 1;
for (let child of node.children) {
if (child.type != balanceType || !(child instanceof Tree)) {
size = 1;
break;
}
size += nodeSize(balanceType, child);
}
nodeSizeCache.set(node, size);
}
return size;
}
function balanceRange(
// The type the balanced tree's inner nodes.
balanceType,
// The direct children and their positions
children, positions,
// The index range in children/positions to use
from, to,
// The start position of the nodes, relative to their parent.
start,
// Length of the outer node
length,
// Function to build the top node of the balanced tree
mkTop,
// Function to build internal nodes for the balanced tree
mkTree) {
let total = 0;
for (let i = from; i < to; i++)
total += nodeSize(balanceType, children[i]);
let maxChild = Math.ceil((total * 1.5) / 8 /* Balance.BranchFactor */);
let localChildren = [], localPositions = [];
function divide(children, positions, from, to, offset) {
for (let i = from; i < to;) {
let groupFrom = i, groupStart = positions[i], groupSize = nodeSize(balanceType, children[i]);
i++;
for (; i < to; i++) {
let nextSize = nodeSize(balanceType, children[i]);
if (groupSize + nextSize >= maxChild)
break;
groupSize += nextSize;
}
if (i == groupFrom + 1) {
if (groupSize > maxChild) {
let only = children[groupFrom]; // Only trees can have a size > 1
divide(only.children, only.positions, 0, only.children.length, positions[groupFrom] + offset);
continue;
}
localChildren.push(children[groupFrom]);
}
else {
let length = positions[i - 1] + children[i - 1].length - groupStart;
localChildren.push(balanceRange(balanceType, children, positions, groupFrom, i, groupStart, length, null, mkTree));
}
localPositions.push(groupStart + offset - start);
}
}
divide(children, positions, from, to, 0);
return (mkTop || mkTree)(localChildren, localPositions, length);
}
/**
Provides a way to associate values with pieces of trees. As long
as that part of the tree is reused, the associated values can be
retrieved from an updated tree.
*/
class NodeWeakMap {
constructor() {
this.map = new WeakMap();
}
setBuffer(buffer, index, value) {
let inner = this.map.get(buffer);
if (!inner)
this.map.set(buffer, inner = new Map);
inner.set(index, value);
}
getBuffer(buffer, index) {
let inner = this.map.get(buffer);
return inner && inner.get(index);
}
/**
Set the value for this syntax node.
*/
set(node, value) {
if (node instanceof BufferNode)
this.setBuffer(node.context.buffer, node.index, value);
else if (node instanceof TreeNode)
this.map.set(node.tree, value);
}
/**
Retrieve value for this syntax node, if it exists in the map.
*/
get(node) {
return node instanceof BufferNode ? this.getBuffer(node.context.buffer, node.index)
: node instanceof TreeNode ? this.map.get(node.tree) : undefined;
}
/**
Set the value for the node that a cursor currently points to.
*/
cursorSet(cursor, value) {
if (cursor.buffer)
this.setBuffer(cursor.buffer.buffer, cursor.index, value);
else
this.map.set(cursor.tree, value);
}
/**
Retrieve the value for the node that a cursor currently points
to.
*/
cursorGet(cursor) {
return cursor.buffer ? this.getBuffer(cursor.buffer.buffer, cursor.index) : this.map.get(cursor.tree);
}
}
/**
Tree fragments are used during [incremental
parsing](#common.Parser.startParse) to track parts of old trees
that can be reused in a new parse. An array of fragments is used
to track regions of an old tree whose nodes might be reused in new
parses. Use the static
[`applyChanges`](#common.TreeFragment^applyChanges) method to
update fragments for document changes.
*/
class TreeFragment {
/**
Construct a tree fragment. You'll usually want to use
[`addTree`](#common.TreeFragment^addTree) and
[`applyChanges`](#common.TreeFragment^applyChanges) instead of
calling this directly.
*/
constructor(
/**
The start of the unchanged range pointed to by this fragment.
This refers to an offset in the _updated_ document (as opposed
to the original tree).
*/
from,
/**
The end of the unchanged range.
*/
to,
/**
The tree that this fragment is based on.
*/
tree,
/**
The offset between the fragment's tree and the document that
this fragment can be used against. Add this when going from
document to tree positions, subtract it to go from tree to
document positions.
*/
offset, openStart = false, openEnd = false) {
this.from = from;
this.to = to;
this.tree = tree;
this.offset = offset;
this.open = (openStart ? 1 /* Open.Start */ : 0) | (openEnd ? 2 /* Open.End */ : 0);
}
/**
Whether the start of the fragment represents the start of a
parse, or the end of a change. (In the second case, it may not
be safe to reuse some nodes at the start, depending on the
parsing algorithm.)
*/
get openStart() { return (this.open & 1 /* Open.Start */) > 0; }
/**
Whether the end of the fragment represents the end of a
full-document parse, or the start of a change.
*/
get openEnd() { return (this.open & 2 /* Open.End */) > 0; }
/**
Create a set of fragments from a freshly parsed tree, or update
an existing set of fragments by replacing the ones that overlap
with a tree with content from the new tree. When `partial` is
true, the parse is treated as incomplete, and the resulting
fragment has [`openEnd`](#common.TreeFragment.openEnd) set to
true.
*/
static addTree(tree, fragments = [], partial = false) {
let result = [new TreeFragment(0, tree.length, tree, 0, false, partial)];
for (let f of fragments)
if (f.to > tree.length)
result.push(f);
return result;
}
/**
Apply a set of edits to an array of fragments, removing or
splitting fragments as necessary to remove edited ranges, and
adjusting offsets for fragments that moved.
*/
static applyChanges(fragments, changes, minGap = 128) {
if (!changes.length)
return fragments;
let result = [];
let fI = 1, nextF = fragments.length ? fragments[0] : null;
for (let cI = 0, pos = 0, off = 0;; cI++) {
let nextC = cI < changes.length ? changes[cI] : null;
let nextPos = nextC ? nextC.fromA : 1e9;
if (nextPos - pos >= minGap)
while (nextF && nextF.from < nextPos) {
let cut = nextF;
if (pos >= cut.from || nextPos <= cut.to || off) {
let fFrom = Math.max(cut.from, pos) - off, fTo = Math.min(cut.to, nextPos) - off;
cut = fFrom >= fTo ? null : new TreeFragment(fFrom, fTo, cut.tree, cut.offset + off, cI > 0, !!nextC);
}
if (cut)
result.push(cut);
if (nextF.to > nextPos)
break;
nextF = fI < fragments.length ? fragments[fI++] : null;
}
if (!nextC)
break;
pos = nextC.toA;
off = nextC.toA - nextC.toB;
}
return result;
}
}
/**
A superclass that parsers should extend.
*/
class Parser {
/**
Start a parse, returning a [partial parse](#common.PartialParse)
object. [`fragments`](#common.TreeFragment) can be passed in to
make the parse incremental.
By default, the entire input is parsed. You can pass `ranges`,
which should be a sorted array of non-empty, non-overlapping
ranges, to parse only those ranges. The tree returned in that
case will start at `ranges[0].from`.
*/
startParse(input, fragments, ranges) {
if (typeof input == "string")
input = new StringInput(input);
ranges = !ranges ? [new Range(0, input.length)] : ranges.length ? ranges.map(r => new Range(r.from, r.to)) : [new Range(0, 0)];
return this.createParse(input, fragments || [], ranges);
}
/**
Run a full parse, returning the resulting tree.
*/
parse(input, fragments, ranges) {
let parse = this.startParse(input, fragments, ranges);
for (;;) {
let done = parse.advance();
if (done)
return done;
}
}
}
class StringInput {
constructor(string) {
this.string = string;
}
get length() { return this.string.length; }
chunk(from) { return this.string.slice(from); }
get lineChunks() { return false; }
read(from, to) { return this.string.slice(from, to); }
}
/**
Create a parse wrapper that, after the inner parse completes,
scans its tree for mixed language regions with the `nest`
function, runs the resulting [inner parses](#common.NestedParse),
and then [mounts](#common.NodeProp^mounted) their results onto the
tree.
*/
function parseMixed(nest) {
return (parse, input, fragments, ranges) => new MixedParse(parse, nest, input, fragments, ranges);
}
class InnerParse {
constructor(parser, parse, overlay, target, from) {
this.parser = parser;
this.parse = parse;
this.overlay = overlay;
this.target = target;
this.from = from;
}
}
function checkRanges(ranges) {
if (!ranges.length || ranges.some(r => r.from >= r.to))
throw new RangeError("Invalid inner parse ranges given: " + JSON.stringify(ranges));
}
class ActiveOverlay {
constructor(parser, predicate, mounts, index, start, target, prev) {
this.parser = parser;
this.predicate = predicate;
this.mounts = mounts;
this.index = index;
this.start = start;
this.target = target;
this.prev = prev;
this.depth = 0;
this.ranges = [];
}
}
const stoppedInner = new NodeProp({ perNode: true });
class MixedParse {
constructor(base, nest, input, fragments, ranges) {
this.nest = nest;
this.input = input;
this.fragments = fragments;
this.ranges = ranges;
this.inner = [];
this.innerDone = 0;
this.baseTree = null;
this.stoppedAt = null;
this.baseParse = base;
}
advance() {
if (this.baseParse) {
let done = this.baseParse.advance();
if (!done)
return null;
this.baseParse = null;
this.baseTree = done;
this.startInner();
if (this.stoppedAt != null)
for (let inner of this.inner)
inner.parse.stopAt(this.stoppedAt);
}
if (this.innerDone == this.inner.length) {
let result = this.baseTree;
if (this.stoppedAt != null)
result = new Tree(result.type, result.children, result.positions, result.length, result.propValues.concat([[stoppedInner, this.stoppedAt]]));
return result;
}
let inner = this.inner[this.innerDone], done = inner.parse.advance();
if (done) {
this.innerDone++;
// This is a somewhat dodgy but super helpful hack where we
// patch up nodes created by the inner parse (and thus
// presumably not aliased anywhere else) to hold the information
// about the inner parse.
let props = Object.assign(Object.create(null), inner.target.props);
props[NodeProp.mounted.id] = new MountedTree(done, inner.overlay, inner.parser);
inner.target.props = props;
}
return null;
}
get parsedPos() {
if (this.baseParse)
return 0;
let pos = this.input.length;
for (let i = this.innerDone; i < this.inner.length; i++) {
if (this.inner[i].from < pos)
pos = Math.min(pos, this.inner[i].parse.parsedPos);
}
return pos;
}
stopAt(pos) {
this.stoppedAt = pos;
if (this.baseParse)
this.baseParse.stopAt(pos);
else
for (let i = this.innerDone; i < this.inner.length; i++)
this.inner[i].parse.stopAt(pos);
}
startInner() {
let fragmentCursor = new FragmentCursor(this.fragments);
let overlay = null;
let covered = null;
let cursor = new TreeCursor(new TreeNode(this.baseTree, this.ranges[0].from, 0, null), exports.IterMode.IncludeAnonymous | exports.IterMode.IgnoreMounts);
scan: for (let nest, isCovered;;) {
let enter = true, range;
if (this.stoppedAt != null && cursor.from >= this.stoppedAt) {
enter = false;
}
else if (fragmentCursor.hasNode(cursor)) {
if (overlay) {
let match = overlay.mounts.find(m => m.frag.from <= cursor.from && m.frag.to >= cursor.to && m.mount.overlay);
if (match)
for (let r of match.mount.overlay) {
let from = r.from + match.pos, to = r.to + match.pos;
if (from >= cursor.from && to <= cursor.to && !overlay.ranges.some(r => r.from < to && r.to > from))
overlay.ranges.push({ from, to });
}
}
enter = false;
}
else if (covered && (isCovered = checkCover(covered.ranges, cursor.from, cursor.to))) {
enter = isCovered != 2 /* Cover.Full */;
}
else if (!cursor.type.isAnonymous && (nest = this.nest(cursor, this.input)) &&
(cursor.from < cursor.to || !nest.overlay)) {
if (!cursor.tree)
materialize(cursor);
let oldMounts = fragmentCursor.findMounts(cursor.from, nest.parser);
if (typeof nest.overlay == "function") {
overlay = new ActiveOverlay(nest.parser, nest.overlay, oldMounts, this.inner.length, cursor.from, cursor.tree, overlay);
}
else {
let ranges = punchRanges(this.ranges, nest.overlay ||
(cursor.from < cursor.to ? [new Range(cursor.from, cursor.to)] : []));
if (ranges.length)
checkRanges(ranges);
if (ranges.length || !nest.overlay)
this.inner.push(new InnerParse(nest.parser, ranges.length ? nest.parser.startParse(this.input, enterFragments(oldMounts, ranges), ranges)
: nest.parser.startParse(""), nest.overlay ? nest.overlay.map(r => new Range(r.from - cursor.from, r.to - cursor.from)) : null, cursor.tree, ranges.length ? ranges[0].from : cursor.from));
if (!nest.overlay)
enter = false;
else if (ranges.length)
covered = { ranges, depth: 0, prev: covered };
}
}
else if (overlay && (range = overlay.predicate(cursor))) {
if (range === true)
range = new Range(cursor.from, cursor.to);
if (range.from < range.to)
overlay.ranges.push(range);
}
if (enter && cursor.firstChild()) {
if (overlay)
overlay.depth++;
if (covered)
covered.depth++;
}
else {
for (;;) {
if (cursor.nextSibling())
break;
if (!cursor.parent())
break scan;
if (overlay && !--overlay.depth) {
let ranges = punchRanges(this.ranges, overlay.ranges);
if (ranges.length) {
checkRanges(ranges);
this.inner.splice(overlay.index, 0, new InnerParse(overlay.parser, overlay.parser.startParse(this.input, enterFragments(overlay.mounts, ranges), ranges), overlay.ranges.map(r => new Range(r.from - overlay.start, r.to - overlay.start)), overlay.target, ranges[0].from));
}
overlay = overlay.prev;
}
if (covered && !--covered.depth)
covered = covered.prev;
}
}
}
}
}
function checkCover(covered, from, to) {
for (let range of covered) {
if (range.from >= to)
break;
if (range.to > from)
return range.from <= from && range.to >= to ? 2 /* Cover.Full */ : 1 /* Cover.Partial */;
}
return 0 /* Cover.None */;
}
// Take a piece of buffer and convert it into a stand-alone
// TreeBuffer.
function sliceBuf(buf, startI, endI, nodes, positions, off) {
if (startI < endI) {
let from = buf.buffer[startI + 1];
nodes.push(buf.slice(startI, endI, from));
positions.push(from - off);
}
}
// This function takes a node that's in a buffer, and converts it, and
// its parent buffer nodes, into a Tree. This is again acting on the
// assumption that the trees and buffers have been constructed by the
// parse that was ran via the mix parser, and thus aren't shared with
// any other code, making violations of the immutability safe.
function materialize(cursor) {
let { node } = cursor, stack = [];
let buffer = node.context.buffer;
// Scan up to the nearest tree
do {
stack.push(cursor.index);
cursor.parent();
} while (!cursor.tree);
// Find the index of the buffer in that tree
let base = cursor.tree, i = base.children.indexOf(buffer);
let buf = base.children[i], b = buf.buffer, newStack = [i];
// Split a level in the buffer, putting the nodes before and after
// the child that contains `node` into new buffers.
function split(startI, endI, type, innerOffset, length, stackPos) {
let targetI = stack[stackPos];
let children = [], positions = [];
sliceBuf(buf, startI, targetI, children, positions, innerOffset);
let from = b[targetI + 1], to = b[targetI + 2];
newStack.push(children.length);
let child = stackPos
? split(targetI + 4, b[targetI + 3], buf.set.types[b[targetI]], from, to - from, stackPos - 1)
: node.toTree();
children.push(child);
positions.push(from - innerOffset);
sliceBuf(buf, b[targetI + 3], endI, children, positions, innerOffset);
return new Tree(type, children, positions, length);
}
base.children[i] = split(0, b.length, NodeType.none, 0, buf.length, stack.length - 1);
// Move the cursor back to the target node
for (let index of newStack) {
let tree = cursor.tree.children[index], pos = cursor.tree.positions[index];
cursor.yield(new TreeNode(tree, pos + cursor.from, index, cursor._tree));
}
}
class StructureCursor {
constructor(root, offset) {
this.offset = offset;
this.done = false;
this.cursor = root.cursor(exports.IterMode.IncludeAnonymous | exports.IterMode.IgnoreMounts);
}
// Move to the first node (in pre-order) that starts at or after `pos`.
moveTo(pos) {
let { cursor } = this, p = pos - this.offset;
while (!this.done && cursor.from < p) {
if (cursor.to >= pos && cursor.enter(p, 1, exports.IterMode.IgnoreOverlays | exports.IterMode.ExcludeBuffers)) ;
else if (!cursor.next(false))
this.done = true;
}
}
hasNode(cursor) {
this.moveTo(cursor.from);
if (!this.done && this.cursor.from + this.offset == cursor.from && this.cursor.tree) {
for (let tree = this.cursor.tree;;) {
if (tree == cursor.tree)
return true;
if (tree.children.length && tree.positions[0] == 0 && tree.children[0] instanceof Tree)
tree = tree.children[0];
else
break;
}
}
return false;
}
}
class FragmentCursor {
constructor(fragments) {
var _a;
this.fragments = fragments;
this.curTo = 0;
this.fragI = 0;
if (fragments.length) {
let first = this.curFrag = fragments[0];
this.curTo = (_a = first.tree.prop(stoppedInner)) !== null && _a !== void 0 ? _a : first.to;
this.inner = new StructureCursor(first.tree, -first.offset);
}
else {
this.curFrag = this.inner = null;
}
}
hasNode(node) {
while (this.curFrag && node.from >= this.curTo)
this.nextFrag();
return this.curFrag && this.curFrag.from <= node.from && this.curTo >= node.to && this.inner.hasNode(node);
}
nextFrag() {
var _a;
this.fragI++;
if (this.fragI == this.fragments.length) {
this.curFrag = this.inner = null;
}
else {
let frag = this.curFrag = this.fragments[this.fragI];
this.curTo = (_a = frag.tree.prop(stoppedInner)) !== null && _a !== void 0 ? _a : frag.to;
this.inner = new StructureCursor(frag.tree, -frag.offset);
}
}
findMounts(pos, parser) {
var _a;
let result = [];
if (this.inner) {
this.inner.cursor.moveTo(pos, 1);
for (let pos = this.inner.cursor.node; pos; pos = pos.parent) {
let mount = (_a = pos.tree) === null || _a === void 0 ? void 0 : _a.prop(NodeProp.mounted);
if (mount && mount.parser == parser) {
for (let i = this.fragI; i < this.fragments.length; i++) {
let frag = this.fragments[i];
if (frag.from >= pos.to)
break;
if (frag.tree == this.curFrag.tree)
result.push({
frag,
pos: pos.from - frag.offset,
mount
});
}
}
}
}
return result;
}
}
function punchRanges(outer, ranges) {
let copy = null, current = ranges;
for (let i = 1, j = 0; i < outer.length; i++) {
let gapFrom = outer[i - 1].to, gapTo = outer[i].from;
for (; j < current.length; j++) {
let r = current[j];
if (r.from >= gapTo)
break;
if (r.to <= gapFrom)
continue;
if (!copy)
current = copy = ranges.slice();
if (r.from < gapFrom) {
copy[j] = new Range(r.from, gapFrom);
if (r.to > gapTo)
copy.splice(j + 1, 0, new Range(gapTo, r.to));
}
else if (r.to > gapTo) {
copy[j--] = new Range(gapTo, r.to);
}
else {
copy.splice(j--, 1);
}
}
}
return current;
}
function findCoverChanges(a, b, from, to) {
let iA = 0, iB = 0, inA = false, inB = false, pos = -1e9;
let result = [];
for (;;) {
let nextA = iA == a.length ? 1e9 : inA ? a[iA].to : a[iA].from;
let nextB = iB == b.length ? 1e9 : inB ? b[iB].to : b[iB].from;
if (inA != inB) {
let start = Math.max(pos, from), end = Math.min(nextA, nextB, to);
if (start < end)
result.push(new Range(start, end));
}
pos = Math.min(nextA, nextB);
if (pos == 1e9)
break;
if (nextA == pos) {
if (!inA)
inA = true;
else {
inA = false;
iA++;
}
}
if (nextB == pos) {
if (!inB)
inB = true;
else {
inB = false;
iB++;
}
}
}
return result;
}
// Given a number of fragments for the outer tree, and a set of ranges
// to parse, find fragments for inner trees mounted around those
// ranges, if any.
function enterFragments(mounts, ranges) {
let result = [];
for (let { pos, mount, frag } of mounts) {
let startPos = pos + (mount.overlay ? mount.overlay[0].from : 0), endPos = startPos + mount.tree.length;
let from = Math.max(frag.from, startPos), to = Math.min(frag.to, endPos);
if (mount.overlay) {
let overlay = mount.overlay.map(r => new Range(r.from + pos, r.to + pos));
let changes = findCoverChanges(ranges, overlay, from, to);
for (let i = 0, pos = from;; i++) {
let last = i == changes.length, end = last ? to : changes[i].from;
if (end > pos)
result.push(new TreeFragment(pos, end, mount.tree, -startPos, frag.from >= pos || frag.openStart, frag.to <= end || frag.openEnd));
if (last)
break;
pos = changes[i].to;
}
}
else {
result.push(new TreeFragment(from, to, mount.tree, -startPos, frag.from >= startPos || frag.openStart, frag.to <= endPos || frag.openEnd));
}
}
return result;
}
exports.DefaultBufferLength = DefaultBufferLength;
exports.MountedTree = MountedTree;
exports.NodeProp = NodeProp;
exports.NodeSet = NodeSet;
exports.NodeType = NodeType;
exports.NodeWeakMap = NodeWeakMap;
exports.Parser = Parser;
exports.Tree = Tree;
exports.TreeBuffer = TreeBuffer;
exports.TreeCursor = TreeCursor;
exports.TreeFragment = TreeFragment;
exports.parseMixed = parseMixed;
|