File size: 1,762 Bytes
c3b1078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from fastapi import FastAPI, UploadFile, File
from fastapi.responses import JSONResponse
from pathlib import Path
import os
from gector import GecBERTModel
from faster_whisper import WhisperModel, BatchedInferencePipeline
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from text_processing.inverse_normalize import InverseNormalizer
import shutil
import uvicorn

# Initialize the FastAPI app
app = FastAPI()

# Initialize models and normalizer
current_dir = Path(__file__).parent.as_posix()
inverse_normalizer = InverseNormalizer('vi')
whisper_model = WhisperModel("pho_distill_q8", device="auto", compute_type="auto")
batched_model = BatchedInferencePipeline(model=whisper_model, use_vad_model=True, chunk_length=15)
gector_model = GecBERTModel(
    vocab_path=os.path.join(current_dir, "gector/vocabulary"),
    model_paths=[os.path.join(current_dir, "gector/Model_GECTOR")],
    split_chunk=True
)
normalizer = BasicTextNormalizer()

@app.post("/transcriptions")
async def transcribe_audio(file: UploadFile = File(...)):
    # Save the uploaded file temporarily
    temp_file_path = Path(f"temp_{file.filename}")
    with open(temp_file_path, "wb") as buffer:
        shutil.copyfileobj(file.file, buffer)
    segments, info = batched_model.transcribe(str(temp_file_path), language="vi", batch_size=32)
    os.remove(temp_file_path)
    transcriptions = [segment.text for segment in segments]
    normalized_transcriptions = [inverse_normalizer.inverse_normalize(normalizer(text)) for text in transcriptions]
    corrected_texts = gector_model(normalized_transcriptions)
    return JSONResponse({"text": ' '.join(corrected_texts)})


if __name__ == "__main__":
    uvicorn.run("api:app", host="0.0.0.0", port=8000, reload=True)