File size: 2,358 Bytes
6064483
 
 
 
 
0f54206
 
 
6064483
 
 
 
 
0f54206
 
 
6064483
 
 
 
 
 
 
 
0f54206
6064483
 
 
0f54206
6064483
 
 
0f54206
6064483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f54206
 
 
 
 
 
 
 
 
 
 
 
 
 
6064483
 
 
 
 
 
0f54206
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: hustvl/yolos-small
tags:
- generated_from_trainer
- Blood Cells
- biology
- medical
datasets:
- blood-cell-object-detection
model-index:
- name: yolos-small-Blood_Cell_Object_Detection
  results: []
language:
- en
pipeline_tag: object-detection
---

# yolos-small-Blood_Cell_Object_Detection

This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on the blood-cell-object-detection dataset.

## Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Object%20Detection/Blood%20Cell%20Object%20Detection/Blood_Cell_Object_Detection_YOLOS.ipynb

## Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

## Training and evaluation data

Dataset Source: https://huggingface.co/datasets/keremberke/blood-cell-object-detection

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Metric Name | IoU | Area | maxDets | Metric Value |
|:-----:|:-----:|:-----:|:-----:|:-----:|
| Average Precision (AP) | IoU=0.50:0.95 | all | maxDets=100 | 0.344 |
| Average Precision (AP) | IoU=0.50 | all | maxDets=100 | 0.579 |
| Average Precision (AP) | IoU=0.75 | all | maxDets=100 | 0.374 |
| Average Precision (AP) | IoU=0.50:0.95 | small | maxDets=100 | 0.097 |
| Average Precision (AP) | IoU=0.50:0.95 | medium | maxDets=100 | 0.258 |
| Average Precision (AP) | IoU=0.50:0.95 | large | maxDets=100 | 0.224 |
| Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=1 | 0.210 |
| Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=10 | 0.376 |
| Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=100 | 0.448 |
| Average Recall (AR) | IoU=0.50:0.95 | small | maxDets=100 | 0.108 |
| Average Recall (AR) | IoU=0.50:0.95 | medium | maxDets=100 | 0.375 |
| Average Recall (AR) | IoU=0.50:0.95 | large | maxDets=100 | 0.448 |

### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3