DunnBC22's picture
update model card README.md
577884e
|
raw
history blame
2.34 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-large-patch32-384-Hyper_Kvasir_Labeled_Images
    results: []

vit-large-patch32-384-Hyper_Kvasir_Labeled_Images

This model is a fine-tuned version of google/vit-large-patch32-384 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3954
  • Accuracy: 0.8202
  • Weighted f1: 0.8151
  • Micro f1: 0.8202
  • Macro f1: 0.7674
  • Weighted recall: 0.8202
  • Micro recall: 0.8202
  • Macro recall: 0.7549
  • Weighted precision: 0.8141
  • Micro precision: 0.8202
  • Macro precision: 0.7860

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted f1 Micro f1 Macro f1 Weighted recall Micro recall Macro recall Weighted precision Micro precision Macro precision
0.3536 1.0 649 0.3568 0.8455 0.8411 0.8455 0.8003 0.8455 0.8455 0.7863 0.8411 0.8455 0.8205
0.4417 2.0 1298 0.3954 0.8202 0.8151 0.8202 0.7674 0.8202 0.8202 0.7549 0.8141 0.8202 0.7860

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3