metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: vit-base-patch16-224-in21k_GI_diagnosis
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9375
language:
- en
pipeline_tag: image-classification
vit-base-patch16-224-in21k_GI_diagnosis
This model is a fine-tuned version of google/vit-base-patch16-224-in21k. It achieves the following results on the evaluation set:
- Loss: 0.2538
- Accuracy: 0.9375
- Weighted f1: 0.9365
- Micro f1: 0.9375
- Macro f1: 0.9365
- Weighted recall: 0.9375
- Micro recall: 0.9375
- Macro recall: 0.9375
- Weighted precision: 0.9455
- Micro precision: 0.9375
- Macro precision: 0.9455
Model description
This is a multiclass image classification model of GI diagnosis'.
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Diagnoses%20from%20Colonoscopy%20Images/diagnosis_from_colonoscopy_image_ViT.ipynb
Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
Training and evaluation data
Dataset Source: https://www.kaggle.com/datasets/francismon/curated-colon-dataset-for-deep-learning
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.3805 | 1.0 | 200 | 0.5006 | 0.8638 | 0.8531 | 0.8638 | 0.8531 | 0.8638 | 0.8638 | 0.8638 | 0.9111 | 0.8638 | 0.9111 |
1.3805 | 2.0 | 400 | 0.2538 | 0.9375 | 0.9365 | 0.9375 | 0.9365 | 0.9375 | 0.9375 | 0.9375 | 0.9455 | 0.9375 | 0.9455 |
0.0628 | 3.0 | 600 | 0.5797 | 0.8812 | 0.8740 | 0.8812 | 0.8740 | 0.8812 | 0.8812 | 0.8813 | 0.9157 | 0.8812 | 0.9157 |
Framework versions
- Transformers 4.22.2
- Pytorch 1.12.1
- Datasets 2.5.2
- Tokenizers 0.12.1