File size: 3,376 Bytes
86be9b0 32d0e7d 86be9b0 b002907 32d0e7d 86be9b0 601e6cc 86be9b0 b002907 86be9b0 b002907 86be9b0 b002907 86be9b0 4d42d04 86be9b0 601e6cc 86be9b0 b002907 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
pipeline_tag: text-classification
base_model: distilbert-base-multilingual-cased
model-index:
- name: distilbert-base-multilingual-cased-language_detection
results: []
---
# distilbert-base-multilingual-cased-language_detection
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0595
- Accuracy: 0.9971
- F1
- Weighted: 0.9971
- Micro: 0.9971
- Macro: 0.9977
- Recall
- Weighted: 0.9971
- Micro: 0.9971
- Macro: 0.9974
- Precision
- Weighted: 0.9971
- Micro: 0.9971
- Macro: 0.9981
## Model description
This is a classification model of 16 different languages.
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Language%20Detection/Language%20Detection-%2010k%20Samples/language_detection-10k.ipynb
## Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
## Training and evaluation data
Dataset Source: https://www.kaggle.com/datasets/basilb2s/language-detection
_Input Word Length:_
![Length of Input Text (in Words)](https://github.com/DunnBC22/NLP_Projects/raw/main/Language%20Detection/Language%20Detection-%2010k%20Samples/Images/Input%20Word%20Length.png)
_Input Word Length By Class:_
![Length of Input Text (in Words) By Class](https://github.com/DunnBC22/NLP_Projects/raw/main/Language%20Detection/Language%20Detection-%2010k%20Samples/Images/Input%20Word%20Length%20by%20Class.png)
_Class Distribution:_
![Class Distribution](https://github.com/DunnBC22/NLP_Projects/raw/main/Language%20Detection/Language%20Detection-%2010k%20Samples/Images/Class%20Distribution.png)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 1.0783 | 1.0 | 128 | 0.1544 | 0.9823 | 0.9819 | 0.9823 | 0.9806 | 0.9823 | 0.9823 | 0.9798 | 0.9847 | 0.9823 | 0.9852 |
| 0.1189 | 2.0 | 256 | 0.0595 | 0.9971 | 0.9971 | 0.9971 | 0.9977 | 0.9971 | 0.9971 | 0.9974 | 0.9971 | 0.9971 | 0.9981 |
| 0.0651 | 3.0 | 384 | 0.0473 | 0.9971 | 0.9971 | 0.9971 | 0.9977 | 0.9971 | 0.9971 | 0.9974 | 0.9971 | 0.9971 | 0.9981 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.12.1
- Datasets 2.9.0
- Tokenizers 0.12.1 |