File size: 1,898 Bytes
48acf4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa6d3de
 
 
 
 
48acf4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: albert-base-v2-Tweet_About_Disaster_Or_Not
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# albert-base-v2-Tweet_About_Disaster_Or_Not

This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2899
- Accuracy: 0.8989
- F1: 0.7784
- Recall: 0.8523
- Precision: 0.7163

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 0.3598        | 1.0   | 143  | 0.3025          | 0.8795   | 0.7495 | 0.8650 | 0.6613    |
| 0.234         | 2.0   | 286  | 0.2899          | 0.8989   | 0.7784 | 0.8523 | 0.7163    |
| 0.1557        | 3.0   | 429  | 0.3424          | 0.9156   | 0.7904 | 0.7637 | 0.8190    |
| 0.0871        | 4.0   | 572  | 0.4189          | 0.9182   | 0.7901 | 0.7384 | 0.8495    |
| 0.0517        | 5.0   | 715  | 0.4396          | 0.9200   | 0.8043 | 0.7890 | 0.8202    |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.12.1