File size: 2,006 Bytes
72016f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
library_name: peft
tags:
- generated_from_trainer
datasets:
- patent-classification
metrics:
- accuracy
base_model: roberta-large
model-index:
- name: roberta-large-flash-attention-2-lora-patent-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-large-flash-attention-2-lora-patent-classification

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the patent-classification dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8395
- Accuracy: 0.6304
- Precision Macro: 0.6136
- Recall Macro: 0.5995
- F1-score Macro: 0.5984

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1-score Macro |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------------:|:------------:|:--------------:|
| 0.7566        | 1.0   | 4167  | 0.9131          | 0.5692   | 0.6231          | 0.5423       | 0.5631         |
| 0.6974        | 2.0   | 8334  | 0.8428          | 0.6174   | 0.6169          | 0.5910       | 0.5942         |
| 0.7219        | 3.0   | 12501 | 0.8395          | 0.6304   | 0.6136          | 0.5995       | 0.5984         |


### Framework versions

- PEFT 0.7.2.dev0
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.2.dev0
- Tokenizers 0.15.0