File size: 2,546 Bytes
e002835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: facebook/mbart-large-50
tags:
- translation
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: mbart-large-50-en-es-translation-lr-1e-05-weight-decay-0.1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mbart-large-50-en-es-translation-lr-1e-05-weight-decay-0.1

This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9532
- Bleu: 45.1551
- Rouge: {'rouge1': 0.707093830119779, 'rouge2': 0.5240989044660875, 'rougeL': 0.6865395711179825, 'rougeLsum': 0.6867643949864491}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Rouge                                                                                                                       |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:---------------------------------------------------------------------------------------------------------------------------:|
| 1.4485        | 1.0   | 4500  | 1.0236          | 42.1586 | {'rouge1': 0.6728104679322686, 'rouge2': 0.4866267759088613, 'rougeL': 0.6507619922873461, 'rougeLsum': 0.6508024989844624} |
| 0.8867        | 2.0   | 9000  | 0.9542          | 44.1945 | {'rouge1': 0.6933374960151913, 'rouge2': 0.5090654274262618, 'rougeL': 0.6722360570050694, 'rougeLsum': 0.6723972406375381} |
| 0.7112        | 3.0   | 13500 | 0.9408          | 44.9173 | {'rouge1': 0.7047659807760827, 'rouge2': 0.5200169348076622, 'rougeL': 0.6839031690668775, 'rougeLsum': 0.6842067045539153} |
| 0.6075        | 4.0   | 18000 | 0.9532          | 45.2020 | {'rouge1': 0.7070170730434684, 'rouge2': 0.5239391023023636, 'rougeL': 0.6863309446860562, 'rougeLsum': 0.6866635686411662} |


### Framework versions

- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4.dev0
- Tokenizers 0.13.3