File size: 2,846 Bytes
738b3ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: GroNLP/hateBERT
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: hateBERT-hate-offensive-normal-speech-lr-2e-05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hateBERT-hate-offensive-normal-speech-lr-2e-05
This model is a fine-tuned version of [GroNLP/hateBERT](https://huggingface.co/GroNLP/hateBERT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0207
- Accuracy: 0.9902
- Weighted f1: 0.9902
- Weighted recall: 0.9902
- Weighted precision: 0.9904
- Micro f1: 0.9902
- Micro recall: 0.9902
- Micro precision: 0.9902
- Macro f1: 0.9901
- Macro recall: 0.9903
- Macro precision: 0.9899
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Weighted recall | Weighted precision | Micro f1 | Micro recall | Micro precision | Macro f1 | Macro recall | Macro precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:---------------:|:------------------:|:--------:|:------------:|:---------------:|:--------:|:------------:|:---------------:|
| 0.6155 | 1.0 | 153 | 0.0889 | 0.9805 | 0.9805 | 0.9805 | 0.9806 | 0.9805 | 0.9805 | 0.9805 | 0.9801 | 0.9811 | 0.9793 |
| 0.0665 | 2.0 | 306 | 0.0368 | 0.9870 | 0.9870 | 0.9870 | 0.9870 | 0.9870 | 0.9870 | 0.9870 | 0.9864 | 0.9866 | 0.9864 |
| 0.0235 | 3.0 | 459 | 0.0264 | 0.9902 | 0.9902 | 0.9902 | 0.9904 | 0.9902 | 0.9902 | 0.9902 | 0.9901 | 0.9903 | 0.9899 |
| 0.0182 | 4.0 | 612 | 0.0414 | 0.9870 | 0.9870 | 0.9870 | 0.9873 | 0.9870 | 0.9870 | 0.9870 | 0.9865 | 0.9869 | 0.9864 |
| 0.012 | 5.0 | 765 | 0.0207 | 0.9902 | 0.9902 | 0.9902 | 0.9904 | 0.9902 | 0.9902 | 0.9902 | 0.9901 | 0.9903 | 0.9899 |
### Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.6.dev0
- Tokenizers 0.13.3
|