File size: 2,971 Bytes
4486ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: distilbert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-multilingual-cased-language-detection-fp16-false-bs-32
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-multilingual-cased-language-detection-fp16-false-bs-32

This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0040
- Accuracy: 0.9992
- Weighted f1: 0.9992
- Micro f1: 0.9992
- Macro f1: 0.9992
- Weighted recall: 0.9992
- Micro recall: 0.9992
- Macro recall: 0.9992
- Weighted precision: 0.9992
- Micro precision: 0.9992
- Macro precision: 0.9992

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 0.1131        | 1.0   | 329  | 0.0040          | 0.9992   | 0.9992      | 0.9992   | 0.9992   | 0.9992          | 0.9992       | 0.9992       | 0.9992             | 0.9992          | 0.9992          |
| 0.0058        | 2.0   | 658  | 0.0063          | 0.9992   | 0.9992      | 0.9992   | 0.9992   | 0.9992          | 0.9992       | 0.9993       | 0.9992             | 0.9992          | 0.9992          |
| 0.0013        | 3.0   | 987  | 0.0061          | 0.9985   | 0.9985      | 0.9985   | 0.9984   | 0.9985          | 0.9985       | 0.9985       | 0.9985             | 0.9985          | 0.9984          |
| 0.0003        | 4.0   | 1316 | 0.0036          | 0.9992   | 0.9992      | 0.9992   | 0.9992   | 0.9992          | 0.9992       | 0.9992       | 0.9992             | 0.9992          | 0.9992          |
| 0.0002        | 5.0   | 1645 | 0.0037          | 0.9992   | 0.9992      | 0.9992   | 0.9992   | 0.9992          | 0.9992       | 0.9992       | 0.9992             | 0.9992          | 0.9992          |


### Framework versions

- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4.dev0
- Tokenizers 0.13.3