File size: 10,949 Bytes
5560b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
A minimal training script for DiT using PyTorch DDP.
"""
import torch
# the first flag below was False when we tested this script but True makes A100 training a lot faster:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision.datasets import ImageFolder
from torchvision import transforms
import numpy as np
from collections import OrderedDict
from PIL import Image
from copy import deepcopy
from glob import glob
from time import time
import argparse
import logging
import os

from models import DiT_models
from diffusion import create_diffusion
from diffusers.models import AutoencoderKL


#################################################################################
#                             Training Helper Functions                         #
#################################################################################

@torch.no_grad()
def update_ema(ema_model, model, decay=0.9999):
    """
    Step the EMA model towards the current model.
    """
    ema_params = OrderedDict(ema_model.named_parameters())
    model_params = OrderedDict(model.named_parameters())

    for name, param in model_params.items():
        # TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed
        ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay)


def requires_grad(model, flag=True):
    """
    Set requires_grad flag for all parameters in a model.
    """
    for p in model.parameters():
        p.requires_grad = flag


def cleanup():
    """
    End DDP training.
    """
    dist.destroy_process_group()


def create_logger(logging_dir):
    """
    Create a logger that writes to a log file and stdout.
    """
    if dist.get_rank() == 0:  # real logger
        logging.basicConfig(
            level=logging.INFO,
            format='[\033[34m%(asctime)s\033[0m] %(message)s',
            datefmt='%Y-%m-%d %H:%M:%S',
            handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
        )
        logger = logging.getLogger(__name__)
    else:  # dummy logger (does nothing)
        logger = logging.getLogger(__name__)
        logger.addHandler(logging.NullHandler())
    return logger


def center_crop_arr(pil_image, image_size):
    """
    Center cropping implementation from ADM.
    https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
    """
    while min(*pil_image.size) >= 2 * image_size:
        pil_image = pil_image.resize(
            tuple(x // 2 for x in pil_image.size), resample=Image.BOX
        )

    scale = image_size / min(*pil_image.size)
    pil_image = pil_image.resize(
        tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
    )

    arr = np.array(pil_image)
    crop_y = (arr.shape[0] - image_size) // 2
    crop_x = (arr.shape[1] - image_size) // 2
    return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])


#################################################################################
#                                  Training Loop                                #
#################################################################################

def main(args):
    """
    Trains a new DiT model.
    """
    assert torch.cuda.is_available(), "Training currently requires at least one GPU."

    # Setup DDP:
    dist.init_process_group("nccl")
    assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
    rank = dist.get_rank()
    device = rank % torch.cuda.device_count()
    seed = args.global_seed * dist.get_world_size() + rank
    torch.manual_seed(seed)
    torch.cuda.set_device(device)
    print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")

    # Setup an experiment folder:
    if rank == 0:
        os.makedirs(args.results_dir, exist_ok=True)  # Make results folder (holds all experiment subfolders)
        experiment_index = len(glob(f"{args.results_dir}/*"))
        model_string_name = args.model.replace("/", "-")  # e.g., DiT-XL/2 --> DiT-XL-2 (for naming folders)
        experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}"  # Create an experiment folder
        checkpoint_dir = f"{experiment_dir}/checkpoints"  # Stores saved model checkpoints
        os.makedirs(checkpoint_dir, exist_ok=True)
        logger = create_logger(experiment_dir)
        logger.info(f"Experiment directory created at {experiment_dir}")
    else:
        logger = create_logger(None)

    # Create model:
    assert args.image_size % 8 == 0, "Image size must be divisible by 8 (for the VAE encoder)."
    latent_size = args.image_size // 8
    model = DiT_models[args.model](
        input_size=latent_size,
        num_classes=args.num_classes
    )
    # Note that parameter initialization is done within the DiT constructor
    ema = deepcopy(model).to(device)  # Create an EMA of the model for use after training
    requires_grad(ema, False)
    model = DDP(model.to(device), device_ids=[rank])
    diffusion = create_diffusion(timestep_respacing="")  # default: 1000 steps, linear noise schedule
    vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}").to(device)
    logger.info(f"DiT Parameters: {sum(p.numel() for p in model.parameters()):,}")

    # Setup optimizer (we used default Adam betas=(0.9, 0.999) and a constant learning rate of 1e-4 in our paper):
    opt = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=0)

    # Setup data:
    transform = transforms.Compose([
        transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
    ])
    dataset = ImageFolder(args.data_path, transform=transform)
    sampler = DistributedSampler(
        dataset,
        num_replicas=dist.get_world_size(),
        rank=rank,
        shuffle=True,
        seed=args.global_seed
    )
    loader = DataLoader(
        dataset,
        batch_size=int(args.global_batch_size // dist.get_world_size()),
        shuffle=False,
        sampler=sampler,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=True
    )
    logger.info(f"Dataset contains {len(dataset):,} images ({args.data_path})")

    # Prepare models for training:
    update_ema(ema, model.module, decay=0)  # Ensure EMA is initialized with synced weights
    model.train()  # important! This enables embedding dropout for classifier-free guidance
    ema.eval()  # EMA model should always be in eval mode

    # Variables for monitoring/logging purposes:
    train_steps = 0
    log_steps = 0
    running_loss = 0
    start_time = time()

    logger.info(f"Training for {args.epochs} epochs...")
    for epoch in range(args.epochs):
        sampler.set_epoch(epoch)
        logger.info(f"Beginning epoch {epoch}...")
        for x, y in loader:
            x = x.to(device)
            y = y.to(device)
            with torch.no_grad():
                # Map input images to latent space + normalize latents:
                x = vae.encode(x).latent_dist.sample().mul_(0.18215)
            t = torch.randint(0, diffusion.num_timesteps, (x.shape[0],), device=device)
            model_kwargs = dict(y=y)
            loss_dict = diffusion.training_losses(model, x, t, model_kwargs)
            loss = loss_dict["loss"].mean()
            opt.zero_grad()
            loss.backward()
            opt.step()
            update_ema(ema, model.module)

            # Log loss values:
            running_loss += loss.item()
            log_steps += 1
            train_steps += 1
            if train_steps % args.log_every == 0:
                # Measure training speed:
                torch.cuda.synchronize()
                end_time = time()
                steps_per_sec = log_steps / (end_time - start_time)
                # Reduce loss history over all processes:
                avg_loss = torch.tensor(running_loss / log_steps, device=device)
                dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
                avg_loss = avg_loss.item() / dist.get_world_size()
                logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
                # Reset monitoring variables:
                running_loss = 0
                log_steps = 0
                start_time = time()

            # Save DiT checkpoint:
            if train_steps % args.ckpt_every == 0 and train_steps > 0:
                if rank == 0:
                    checkpoint = {
                        "model": model.module.state_dict(),
                        "ema": ema.state_dict(),
                        "opt": opt.state_dict(),
                        "args": args
                    }
                    checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
                    torch.save(checkpoint, checkpoint_path)
                    logger.info(f"Saved checkpoint to {checkpoint_path}")
                dist.barrier()

    model.eval()  # important! This disables randomized embedding dropout
    # do any sampling/FID calculation/etc. with ema (or model) in eval mode ...

    logger.info("Done!")
    cleanup()


if __name__ == "__main__":
    # Default args here will train DiT-XL/2 with the hyperparameters we used in our paper (except training iters).
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, required=True)
    parser.add_argument("--results-dir", type=str, default="results")
    parser.add_argument("--model", type=str, choices=list(DiT_models.keys()), default="DiT-XL/2")
    parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
    parser.add_argument("--num-classes", type=int, default=1000)
    parser.add_argument("--epochs", type=int, default=1400)
    parser.add_argument("--global-batch-size", type=int, default=256)
    parser.add_argument("--global-seed", type=int, default=0)
    parser.add_argument("--vae", type=str, choices=["ema", "mse"], default="ema")  # Choice doesn't affect training
    parser.add_argument("--num-workers", type=int, default=4)
    parser.add_argument("--log-every", type=int, default=100)
    parser.add_argument("--ckpt-every", type=int, default=50_000)
    args = parser.parse_args()
    main(args)