metadata
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
widget:
- text: >-
काठमाडौंको बहिराव बसपार्कमा एक भयानक दुर्घटना घटेको थियो। रातको समय थियो र
भारी वर्षा जम्मा भएको थियो।
base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit
pipeline_tag: text2text-generation
datasets:
- sanjeev-bhandari01/nepali-summarization-dataset
Uploaded model
- Developed by: Dragneel
- License: apache-2.0
- Finetuned from model : unsloth/Phi-3-mini-4k-instruct-bnb-4bit
Use The Model
from transformers import AutoTokenizer, AutoModelForCausalLM
Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Dragneel/Phi-3-mini-Nepali-Text-Summarization-f16")
model = AutoModelForCausalLM.from_pretrained("Dragneel/Phi-3-mini-Nepali-Text-Summarization-f16")
Example input text
input_text = "Summarize Nepali Text in Nepali: काठमाडौंको बहिराव बसपार्कमा एक भयानक दुर्घटना घटेको थियो। रातको समय थियो र भारी बर्फ जम्मा भएको थियो।"
Tokenize the input text
input_ids = tokenizer.encode(input_text, return_tensors='pt')
Generate text with adjusted parameters
outputs = model.generate(input_ids, max_new_tokens=50)
Decode the generated tokens
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)