metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-leukemia-08-2024.v1.2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.74475
swin-tiny-patch4-window7-224-finetuned-leukemia-08-2024.v1.2
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.1793
- Accuracy: 0.7448
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.471 | 0.9984 | 312 | 0.5907 | 0.6715 |
0.3376 | 2.0 | 625 | 0.8904 | 0.702 |
0.2266 | 2.9984 | 937 | 1.8065 | 0.556 |
0.2529 | 4.0 | 1250 | 0.8170 | 0.713 |
0.1925 | 4.9984 | 1562 | 1.0643 | 0.6907 |
0.177 | 6.0 | 1875 | 1.2558 | 0.6843 |
0.1563 | 6.9984 | 2187 | 0.9205 | 0.7445 |
0.1417 | 8.0 | 2500 | 0.6624 | 0.8063 |
0.1284 | 8.9984 | 2812 | 1.1648 | 0.739 |
0.0805 | 9.984 | 3120 | 1.1793 | 0.7448 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1