DouglasBraga's picture
Model save
3a77b59 verified
|
raw
history blame
2.63 kB
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-leukemia-08-2024.v1.2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.74475

swin-tiny-patch4-window7-224-finetuned-leukemia-08-2024.v1.2

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1793
  • Accuracy: 0.7448

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.471 0.9984 312 0.5907 0.6715
0.3376 2.0 625 0.8904 0.702
0.2266 2.9984 937 1.8065 0.556
0.2529 4.0 1250 0.8170 0.713
0.1925 4.9984 1562 1.0643 0.6907
0.177 6.0 1875 1.2558 0.6843
0.1563 6.9984 2187 0.9205 0.7445
0.1417 8.0 2500 0.6624 0.8063
0.1284 8.9984 2812 1.1648 0.739
0.0805 9.984 3120 1.1793 0.7448

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1