metadata
language:
- ko
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
The license is cc-by-nc-sa-4.0
.
π»ββοΈCOKAL_merged_test-v1-13Bπ»ββοΈ
Model Details
Model Developers Seungyoo Lee(DopeorNope)
Input Models input text only.
Output Models generate text only.
Model Architecture
COKAL_merged_test-v1-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.
Base Model
HumanF-MarkrAI/COKAL-DPO-13b-v2
MarkrAI/DopeorNope-maestro-v2-DPO-13b
Implemented Method
I utilized slerp merge
to smoothly blend the gradients of the base models to create it.
The merging approach relies on some luck, but at the same time, if I have an accurate understanding of my model's performance, I can carefully select models that excel in each aspect to develop a well-balanced model.
Thanks to maywell for sharing useful tips related to the merge method.
Model Benchmark
KO-LLM leaderboard
- Follow up as Open KO-LLM LeaderBoard.
Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|---|
COKAL_merged_test-v1-13Bπ»ββοΈ | 52.72 | 51.45 | 60.55 | 44.8 | 49.05 | 57.73 |
COKAL-DPO-13b-v2π»ββοΈ | 52.69 | 54.95 | 63.02 | 43.98 | 51.67 | 49.82 |
COKAL-DPO_test-v2-13bπ»ββοΈ | 52.67 | 55.63 | 63.5 | 43.49 | 51.5 | 49.23 |
hyeogi/Yi-6b-dpo-v0.2 | 52.63 | 41.72 | 52.96 | 46.69 | 52.38 | 69.42 |
DopeorNope-maestro-v2-DPO-13bπ»ββοΈ | 49.42 | 45.14 | 56.69 | 41.37 | 42.26 | 61.63 |
Implementation Code
Load model
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "DopeorNope/COKAL_merged_test-v1-13B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
Prompt (Alpaca format)
prompt= f"μλλ λ¬Έμ λ₯Ό μ€λͺ
νλ μ§μμ¬νκ³Ό, ꡬ체μ μΈ λ΅λ³μ λ°©μμ μꡬνλ μ
λ ₯μ΄ ν¨κ» μλ λ¬Έμ₯μ
λλ€. μ΄ μμ²μ λν΄ μ μ νκ² λ΅λ³ν΄μ£ΌμΈμ.\n\n### μ§μμ¬ν:\n{instruction}\n\n### μ
λ ₯:\n{input}\n\n### λ΅λ³:\n"
prompt_no_input = f"μλλ λ¬Έμ λ₯Ό μ€λͺ
νλ μ§μμ¬νμ
λλ€. μ΄ μμ²μ λν΄ μ μ νκ² λ΅λ³ν΄μ£ΌμΈμ.\n\n### μ§μμ¬ν:\n{instruction}\n\n### λ΅λ³:\n"