DopeorNope's picture
Update README.md
56ce433
|
raw
history blame
3.09 kB
metadata
language:
  - ko
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0

The license is cc-by-nc-sa-4.0.

πŸ»β€β„οΈCOKAL_merged_test-v1-13BπŸ»β€β„οΈ

img

Model Details

Model Developers Seungyoo Lee(DopeorNope)

Input Models input text only.

Output Models generate text only.

Model Architecture
COKAL_merged_test-v1-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.


Base Model

HumanF-MarkrAI/COKAL-DPO-13b-v2

MarkrAI/DopeorNope-maestro-v2-DPO-13b

Implemented Method

I utilized slerp merge to smoothly blend the gradients of the base models to create it.

The merging approach relies on some luck, but at the same time, if I have an accurate understanding of my model's performance, I can carefully select models that excel in each aspect to develop a well-balanced model.

Thanks to maywell for sharing useful tips related to the merge method.


Model Benchmark

KO-LLM leaderboard

Model Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
COKAL_merged_test-v1-13BπŸ»β€β„οΈ 52.72 51.45 60.55 44.8 49.05 57.73
COKAL-DPO-13b-v2πŸ»β€β„οΈ 52.69 54.95 63.02 43.98 51.67 49.82
COKAL-DPO_test-v2-13bπŸ»β€β„οΈ 52.67 55.63 63.5 43.49 51.5 49.23
hyeogi/Yi-6b-dpo-v0.2 52.63 41.72 52.96 46.69 52.38 69.42
DopeorNope-maestro-v2-DPO-13bπŸ»β€β„οΈ 49.42 45.14 56.69 41.37 42.26 61.63

Implementation Code

Load model


from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "DopeorNope/COKAL_merged_test-v1-13B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Prompt (Alpaca format)


prompt= f"μ•„λž˜λŠ” 문제λ₯Ό μ„€λͺ…ν•˜λŠ” μ§€μ‹œμ‚¬ν•­κ³Ό, ꡬ체적인 닡변을 방식을 μš”κ΅¬ν•˜λŠ” μž…λ ₯이 ν•¨κ»˜ μžˆλŠ” λ¬Έμž₯μž…λ‹ˆλ‹€. 이 μš”μ²­μ— λŒ€ν•΄ μ μ ˆν•˜κ²Œ λ‹΅λ³€ν•΄μ£Όμ„Έμš”.\n\n### μ§€μ‹œμ‚¬ν•­:\n{instruction}\n\n### μž…λ ₯:\n{input}\n\n### λ‹΅λ³€:\n"

prompt_no_input = f"μ•„λž˜λŠ” 문제λ₯Ό μ„€λͺ…ν•˜λŠ” μ§€μ‹œμ‚¬ν•­μž…λ‹ˆλ‹€. 이 μš”μ²­μ— λŒ€ν•΄ μ μ ˆν•˜κ²Œ λ‹΅λ³€ν•΄μ£Όμ„Έμš”.\n\n### μ§€μ‹œμ‚¬ν•­:\n{instruction}\n\n### λ‹΅λ³€:\n"