File size: 7,370 Bytes
d95e9bb ea5de0e d95e9bb ea5de0e ca3d45e ea5de0e ece7b2c 010f184 ea5de0e 2e58d77 ea5de0e 2e58d77 01d6325 1b6aaab 2e58d77 1b6aaab 2e58d77 01d6325 2e58d77 ea5de0e 2e58d77 ea5de0e 2e58d77 ea5de0e 100e6f4 ea5de0e 2e58d77 ea5de0e 2e58d77 ea5de0e 2e58d77 6f11226 ea5de0e 2e58d77 ea5de0e 2e58d77 ea5de0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
license: mit
language:
- ko
- en
pipeline_tag: text-classification
---
# Korean Reranker Training on Amazon SageMaker
### **ํ๊ตญ์ด Reranker** ๊ฐ๋ฐ์ ์ํ ํ์ธํ๋ ๊ฐ์ด๋๋ฅผ ์ ์ํฉ๋๋ค.
ko-reranker๋ [BAAI/bge-reranker-larger](https://huggingface.co/BAAI/bge-reranker-large) ๊ธฐ๋ฐ ํ๊ตญ์ด ๋ฐ์ดํฐ์ ๋ํ fine-tuned model ์
๋๋ค. <br>
๋ณด๋ค ์์ธํ ์ฌํญ์ [korean-reranker-git](https://github.com/aws-samples/aws-ai-ml-workshop-kr/tree/master/genai/aws-gen-ai-kr/30_fine_tune/reranker-kr)์ ์ฐธ๊ณ ํ์ธ์
- - -
## 0. Features
- #### <span style="#FF69B4;"> Reranker๋ ์๋ฒ ๋ฉ ๋ชจ๋ธ๊ณผ ๋ฌ๋ฆฌ ์ง๋ฌธ๊ณผ ๋ฌธ์๋ฅผ ์
๋ ฅ์ผ๋ก ์ฌ์ฉํ๋ฉฐ ์๋ฒ ๋ฉ ๋์ ์ ์ฌ๋๋ฅผ ์ง์ ์ถ๋ ฅํฉ๋๋ค.</span>
- #### <span style="#FF69B4;"> Reranker์ ์ง๋ฌธ๊ณผ ๊ตฌ์ ์ ์
๋ ฅํ๋ฉด ์ฐ๊ด์ฑ ์ ์๋ฅผ ์ป์ ์ ์์ต๋๋ค.</span>
- #### <span style="#FF69B4;"> Reranker๋ CrossEntropy loss๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ์ต์ ํ๋๋ฏ๋ก ๊ด๋ จ์ฑ ์ ์๊ฐ ํน์ ๋ฒ์์ ๊ตญํ๋์ง ์์ต๋๋ค.</span>
## 1.Usage
- using Transformers
```
def exp_normalize(x):
b = x.max()
y = np.exp(x - b)
return y / y.sum()
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
model.eval()
pairs = [["๋๋ ๋๋ฅผ ์ซ์ดํด", "๋๋ ๋๋ฅผ ์ฌ๋ํด"], \
["๋๋ ๋๋ฅผ ์ข์ํด", "๋์ ๋ํ ๋์ ๊ฐ์ ์ ์ฌ๋ ์ผ ์๋ ์์ด"]]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
scores = exp_normalize(scores.numpy())
print (f'first: {scores[0]}, second: {scores[1]}')
```
- using SageMaker
```
import sagemaker
import boto3
from sagemaker.huggingface import HuggingFaceModel
try:
role = sagemaker.get_execution_role()
except ValueError:
iam = boto3.client('iam')
role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']
# Hub Model configuration. https://huggingface.co/models
hub = {
'HF_MODEL_ID':'Dongjin-kr/ko-reranker',
'HF_TASK':'text-classification'
}
# create Hugging Face Model Class
huggingface_model = HuggingFaceModel(
transformers_version='4.28.1',
pytorch_version='2.0.0',
py_version='py310',
env=hub,
role=role,
)
# deploy model to SageMaker Inference
predictor = huggingface_model.deploy(
initial_instance_count=1, # number of instances
instance_type='ml.g5.large' # ec2 instance type
)
runtime_client = boto3.Session().client('sagemaker-runtime')
payload = json.dumps(
{
"inputs": [
{"text": "๋๋ ๋๋ฅผ ์ซ์ดํด", "text_pair": "๋๋ ๋๋ฅผ ์ฌ๋ํด"},
{"text": "๋๋ ๋๋ฅผ ์ข์ํด", "text_pair": "๋์ ๋ํ ๋์ ๊ฐ์ ์ ์ฌ๋ ์ผ ์๋ ์์ด"}
]
}
)
response = runtime_client.invoke_endpoint(
EndpointName="<endpoint-name>",
ContentType="application/json",
Accept=application/json",
Body=payload
)
## deserialization
out = json.loads(response['Body'].read().decode()) ## for json
print (f'Response: {out}')
```
## 2. Backgound
- #### <span style="#FF69B4;"> **์ปจํ์คํธ ์์๊ฐ ์ ํ๋์ ์ํฅ ์ค๋ค**([Lost in Middel, *Liu et al., 2023*](https://arxiv.org/pdf/2307.03172.pdf)) </span>
- #### <span style="#FF69B4;"> [Reranker ์ฌ์ฉํด์ผ ํ๋ ์ด์ ](https://www.pinecone.io/learn/series/rag/rerankers/)</span>
- ํ์ฌ LLM์ context ๋ง์ด ๋ฃ๋๋ค๊ณ ์ข์๊ฑฐ ์๋, relevantํ๊ฒ ์์์ ์์ด์ผ ์ ๋ต์ ์ ๋งํด์ค๋ค
- Semantic search์์ ์ฌ์ฉํ๋ similarity(relevant) score๊ฐ ์ ๊ตํ์ง ์๋ค. (์ฆ, ์์ ๋ญ์ปค๋ฉด ํ์ ๋ญ์ปค๋ณด๋ค ํญ์ ๋ ์ง๋ฌธ์ ์ ์ฌํ ์ ๋ณด๊ฐ ๋ง์?)
* Embedding์ meaning behind document๋ฅผ ๊ฐ์ง๋ ๊ฒ์ ํนํ๋์ด ์๋ค.
* ์ง๋ฌธ๊ณผ ์ ๋ต์ด ์๋ฏธ์ ๊ฐ์๊ฑด ์๋๋ค. ([Hypothetical Document Embeddings](https://medium.com/prompt-engineering/hyde-revolutionising-search-with-hypothetical-document-embeddings-3474df795af8))
* ANNs([Approximate Nearest Neighbors](https://towardsdatascience.com/comprehensive-guide-to-approximate-nearest-neighbors-algorithms-8b94f057d6b6)) ์ฌ์ฉ์ ๋ฐ๋ฅธ ํจ๋ํฐ
- - -
## 3. Reranker models
- #### <span style="#FF69B4;"> [Cohere] [Reranker](https://txt.cohere.com/rerank/)</span>
- #### <span style="#FF69B4;"> [BAAI] [bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large)</span>
- #### <span style="#FF69B4;"> [BAAI] [bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base)</span>
- - -
## 4. Dataset
- #### <span style="#FF69B4;"> [msmarco-triplets](https://github.com/microsoft/MSMARCO-Passage-Ranking) </span>
- (Question, Answer, Negative)-Triplets from MS MARCO Passages dataset, 499,184 samples
- ํด๋น ๋ฐ์ดํฐ ์
์ ์๋ฌธ์ผ๋ก ๊ตฌ์ฑ๋์ด ์์ต๋๋ค.
- Amazon Translate ๊ธฐ๋ฐ์ผ๋ก ๋ฒ์ญํ์ฌ ํ์ฉํ์์ต๋๋ค.
- #### <span style="#FF69B4;"> Format </span>
```
{"query": str, "pos": List[str], "neg": List[str]}
```
- Query๋ ์ง๋ฌธ์ด๊ณ , pos๋ ๊ธ์ ํ
์คํธ ๋ชฉ๋ก, neg๋ ๋ถ์ ํ
์คํธ ๋ชฉ๋ก์
๋๋ค. ์ฟผ๋ฆฌ์ ๋ํ ๋ถ์ ํ
์คํธ๊ฐ ์๋ ๊ฒฝ์ฐ ์ ์ฒด ๋ง๋ญ์น์์ ์ผ๋ถ๋ฅผ ๋ฌด์์๋ก ์ถ์ถํ์ฌ ๋ถ์ ํ
์คํธ๋ก ์ฌ์ฉํ ์ ์์ต๋๋ค.
- #### <span style="#FF69B4;"> Examples </span>
```
{"query": "๋ํ๋ฏผ๊ตญ์ ์๋๋?", "pos": ["๋ฏธ๊ตญ์ ์๋๋ ์์ฑํด์ด๊ณ , ์ผ๋ณธ์ ๋๊ต์ด๋ฉฐ ํ๊ตญ์ ์์ธ์ด๋ค."], "neg": ["๋ฏธ๊ตญ์ ์๋๋ ์์ฑํด์ด๊ณ , ์ผ๋ณธ์ ๋๊ต์ด๋ฉฐ ๋ถํ์ ํ์์ด๋ค."]}
```
- - -
## 5. Performance
| Model | has-right-in-contexts | mrr (mean reciprocal rank) |
|:---------------------------|:-----------------:|:--------------------------:|
| without-reranker (default)| 0.93 | 0.80 |
| with-reranker (bge-reranker-large)| 0.95 | 0.84 |
| **with-reranker (fine-tuned using korean)** | **0.96** | **0.87** |
- **evaluation set**:
```code
./dataset/evaluation/eval_dataset.csv
```
- **training parameters**:
```json
{
"learning_rate": 5e-6,
"fp16": True,
"num_train_epochs": 3,
"per_device_train_batch_size": 1,
"gradient_accumulation_steps": 32,
"train_group_size": 3,
"max_len": 512,
"weight_decay": 0.01,
}
```
- - -
## 6. Acknowledgement
- <span style="#FF69B4;"> Part of the code is developed based on [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/tree/master?tab=readme-ov-file) and [KoSimCSE-SageMaker](https://github.com/daekeun-ml/KoSimCSE-SageMaker/tree/7de6eefef8f1a646c664d0888319d17480a3ebe5).</span>
- - -
## 7. Citation
- <span style="#FF69B4;"> If you find this repository useful, please consider giving a like โญ and citation</span>
- - -
## 8. Contributors:
- <span style="#FF69B4;"> **Dongjin Jang, Ph.D.** (AWS AI/ML Specislist Solutions Architect) | [Mail](mailto:dongjinj@amazon.com) | [Linkedin](https://www.linkedin.com/in/dongjin-jang-kr/) | [Git](https://github.com/dongjin-ml) | </span>
- - -
## 9. License
- <span style="#FF69B4;"> FlagEmbedding is licensed under the [MIT License](https://github.com/aws-samples/aws-ai-ml-workshop-kr/blob/master/LICENSE). </span>
|