Doctor-Shotgun commited on
Commit
94d34d9
1 Parent(s): 61944bd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -9
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- license: apache-2.0
3
  base_model: mistralai/Mistral-7B-v0.1
4
  tags:
5
  - generated_from_trainer
@@ -8,27 +8,35 @@ model-index:
8
  results: []
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
-
14
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
- # supercot-lora
16
 
17
- This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
  - Loss: 0.9790
20
 
21
  ## Model description
22
 
23
- More information needed
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  ## Intended uses & limitations
26
 
27
- More information needed
28
 
29
  ## Training and evaluation data
30
 
31
- More information needed
32
 
33
  ## Training procedure
34
 
@@ -108,3 +116,37 @@ The following hyperparameters were used during training:
108
  - Pytorch 2.0.1+cu118
109
  - Datasets 2.14.5
110
  - Tokenizers 0.14.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
  base_model: mistralai/Mistral-7B-v0.1
4
  tags:
5
  - generated_from_trainer
 
8
  results: []
9
  ---
10
 
 
 
 
11
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
12
+ # mistral-v0.1-supercot-lora
13
 
14
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [supercot](https://huggingface.co/datasets/kaiokendev/SuperCOT-dataset) dataset.
15
  It achieves the following results on the evaluation set:
16
  - Loss: 0.9790
17
 
18
  ## Model description
19
 
20
+ SuperCOT is a LoRA trained with the aim of making Mistral follow prompts for Langchain better, by infusing chain-of-thought datasets, code explanations and instructions, snippets, logical deductions and Alpaca GPT-4 prompts. It uses a mixture of the following datasets:
21
+
22
+ https://huggingface.co/datasets/QingyiSi/Alpaca-CoT
23
+ - Chain of thought QED
24
+ - Chain of thought Aqua
25
+ - CodeAlpaca
26
+
27
+ https://huggingface.co/datasets/neulab/conala
28
+ - Code snippets
29
+
30
+ https://huggingface.co/datasets/yahma/alpaca-cleaned
31
+ - Alpaca GPT4
32
 
33
  ## Intended uses & limitations
34
 
35
+ The model will show biases similar to those exhibited by the base model. It is not intended for supplying factual information or advice in any form.
36
 
37
  ## Training and evaluation data
38
 
39
+ [kaiokendev/SuperCOT-dataset](https://huggingface.co/datasets/kaiokendev/SuperCOT-dataset)
40
 
41
  ## Training procedure
42
 
 
116
  - Pytorch 2.0.1+cu118
117
  - Datasets 2.14.5
118
  - Tokenizers 0.14.0
119
+
120
+ ### Citations
121
+
122
+ Alpaca COT datasets
123
+ ```
124
+ @misc{alpaca-cot,
125
+ author = {Qingyi Si, Zheng Lin },
126
+ school = {Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China},
127
+ title = {Alpaca-CoT: An Instruction Fine-Tuning Platform with Instruction Data Collection and Unified Large Language Models Interface},
128
+ year = {2023},
129
+ publisher = {GitHub},
130
+ journal = {GitHub repository},
131
+ howpublished = {\url{https://github.com/PhoebusSi/alpaca-CoT}},
132
+ }
133
+ ```
134
+ Stanford Alpaca
135
+ ```
136
+ @misc{alpaca,
137
+ author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
138
+ title = {Stanford Alpaca: An Instruction-following LLaMA model},
139
+ year = {2023},
140
+ publisher = {GitHub},
141
+ journal = {GitHub repository},
142
+ howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
143
+ }
144
+ ```
145
+ Google FLAN
146
+ ```
147
+ @inproceedings{weifinetuned,
148
+ title={Finetuned Language Models are Zero-Shot Learners},
149
+ author={Wei, Jason and Bosma, Maarten and Zhao, Vincent and Guu, Kelvin and Yu, Adams Wei and Lester, Brian and Du, Nan and Dai, Andrew M and Le, Quoc V},
150
+ booktitle={International Conference on Learning Representations}
151
+ }
152
+ ```