Models-coll / script /ContorlNet_I2I_sequence_toyxyz_V2.py
DmitrMakeev's picture
Upload 3 files
fee99f1
raw
history blame
12.2 kB
import copy
import os
import shutil
import cv2
import gradio as gr
import numpy as np
import modules.scripts as scripts
from modules import images, processing
from modules.processing import process_images, Processed
from modules.shared import opts
from PIL import Image, ImageFilter, ImageColor, ImageOps
from pathlib import Path
from typing import List, Tuple, Iterable
#Returns a list of images located in the input path. For ControlNet iamges
def get_all_frames_from_path(path):
if not os.path.isdir(path):
return None
frame_list = []
for filename in sorted(os.listdir(path)):
if filename.endswith(".jpg") or filename.endswith(".png"):
img_path = os.path.join(path, filename)
img = cv2.imread(img_path)
if img is not None:
frame_list.append(img)
frame_list.insert(0, frame_list[0])
return frame_list
#Returns a list of images located in the input path. For Color iamges
def get_images_from_path(path):
if not os.path.isdir(path):
return None
images = []
for filename in os.listdir(path):
if filename.endswith('.jpg') or filename.endswith('.png'):
img_path = os.path.join(path, filename)
img = Image.open(img_path)
images.append(img)
images.append(images[-1])
images.insert(0, images[0])
return images
#Returns the number of the smallest number in the entire image sequence list. For ControlNet
def get_min_frame_num(video_list):
min_frame_num = -1
for video in video_list:
if video is None:
continue
else:
frame_num = len(video)
print(frame_num)
if min_frame_num < 0:
min_frame_num = frame_num
elif frame_num < min_frame_num:
min_frame_num = frame_num
return min_frame_num
#Blende method
def basic(target, blend, opacity):
return target * opacity + blend * (1-opacity)
def blender(func):
def blend(target, blend, opacity=1, *args):
res = func(target, blend, *args)
res = basic(res, blend, opacity)
return np.clip(res, 0, 1)
return blend
class Blend:
@classmethod
def method(cls, name):
return getattr(cls, name)
normal = basic
@staticmethod
@blender
def darken(target, blend, *args):
return np.minimum(target, blend)
@staticmethod
@blender
def multiply(target, blend, *args):
return target * blend
@staticmethod
@blender
def color_burn(target, blend, *args):
return 1 - (1-target)/blend
@staticmethod
@blender
def linear_burn(target, blend, *args):
return target+blend-1
@staticmethod
@blender
def lighten(target, blend, *args):
return np.maximum(target, blend)
@staticmethod
@blender
def screen(target, blend, *args):
return 1 - (1-target) * (1-blend)
@staticmethod
@blender
def color_dodge(target, blend, *args):
return target/(1-blend)
@staticmethod
@blender
def linear_dodge(target, blend, *args):
return target+blend
@staticmethod
@blender
def overlay(target, blend, *args):
return (target>0.5) * (1-(2-2*target)*(1-blend)) +\
(target<=0.5) * (2*target*blend)
@staticmethod
@blender
def soft_light(target, blend, *args):
return (blend>0.5) * (1 - (1-target)*(1-(blend-0.5))) +\
(blend<=0.5) * (target*(blend+0.5))
@staticmethod
@blender
def hard_light(target, blend, *args):
return (blend>0.5) * (1 - (1-target)*(2-2*blend)) +\
(blend<=0.5) * (2*target*blend)
@staticmethod
@blender
def vivid_light(target, blend, *args):
return (blend>0.5) * (1 - (1-target)/(2*blend-1)) +\
(blend<=0.5) * (target/(1-2*blend))
@staticmethod
@blender
def linear_light(target, blend, *args):
return (blend>0.5) * (target + 2*(blend-0.5)) +\
(blend<=0.5) * (target + 2*blend)
@staticmethod
@blender
def pin_light(target, blend, *args):
return (blend>0.5) * np.maximum(target,2*(blend-0.5)) +\
(blend<=0.5) * np.minimum(target,2*blend)
@staticmethod
@blender
def difference(target, blend, *args):
return np.abs(target - blend)
@staticmethod
@blender
def exclusion(target, blend, *args):
return 0.5 - 2*(target-0.5)*(blend-0.5)
blend_methods = [i for i in Blend.__dict__.keys() if i[0]!='_' and i!='method']
def blend_images(base_img, blend_img, blend_method, blend_opacity, do_invert):
img_base = np.array(base_img.convert("RGB")).astype(np.float64)/255
if do_invert:
img_to_blend = ImageOps.invert(blend_img.convert('RGB'))
else:
img_to_blend = blend_img
img_to_blend = img_to_blend.resize((int(base_img.width), int(base_img.height)))
img_to_blend = np.array(img_to_blend.convert("RGB")).astype(np.float64)/255
img_blended = Blend.method(blend_method)(img_to_blend, img_base, blend_opacity)
img_blended *= 255
img_blended = Image.fromarray(img_blended.astype(np.uint8), mode='RGB')
return img_blended
#Define UI and script properties.
class Script(scripts.Script):
def title(self):
return "controlnet I2I sequence_toyxyz_v2"
def show(self, is_img2img):
return is_img2img
def ui(self, is_img2img):
ctrls_group = ()
max_models = opts.data.get("control_net_max_models_num", 1)
input_list = []
with gr.Group():
with gr.Accordion("ControlNet-I2I-sequence-toyxyz", open = True):
with gr.Column():
feed_prev_frame = gr.Checkbox(value=False, label="Feed previous frame / Reduce flickering by feeding the previous frame image generated by Img2Img")
use_init_img = gr.Checkbox(value=False, label="Blend color image / Blend the color image sequence with the initial Img2Img image or previous frame")
use_TemporalNet = gr.Checkbox(value=False, label="Use TemporalNet / Using TemporalNet to reduce flicker between image sequences. Add TemporalNet in addition to the multi-controlnet you need. It should be placed at the end of the controlnet list.")
blendmode = gr.Dropdown(blend_methods, value='normal', label='Blend mode / Choose how to blend the color image with the Previous frame or Img2Img initial image')
opacityvalue = gr.Slider(0, 1, value=0, label="Opacity / Previous frame or Img2Img initial image + (color image * opacity)", info="Choose betwen 0 and 1")
for i in range(max_models):
input_path = gr.Textbox(label=f"ControlNet-{i}", placeholder="image sequence path")
input_list.append(input_path)
tone_image_path = gr.Textbox(label=f"Color_Image / Color images to be used for Img2Img in sequence", placeholder="image sequence path")
output_path = gr.Textbox(label=f"Output_path / Deletes the contents located in the path, and creates a new path if it does not exist", placeholder="Output path")
ctrls_group += tuple(input_list) + (use_TemporalNet, use_init_img, opacityvalue, blendmode, feed_prev_frame, tone_image_path, output_path)
return ctrls_group
#Image Generate Definition
def run(self, p, *args):
path = p.outpath_samples
output_path = args[-1] # get the last argument, which is the output path
feedprev = args[-3]
blendm = args[-4]
opacityval = args[-5]
useinit = args[-6]
usetempo = args[-7]
# Check whether the output path exists, if it does, delete it and create a new one.
if os.path.isdir(output_path):
for file in os.scandir(output_path):
os.remove(file.path)
else :
os.mkdir(output_path)
#Get the number of controlnet models.
video_num = opts.data.get("control_net_max_models_num", 1)
# Get the ControlNet image sequence list.
image_list = [get_all_frames_from_path(image) for image in args[:video_num]]
# Get a list of color image sequences.
color_image_list = get_images_from_path(args[-2])
# Get the first frame
previmg = p.init_images
tempoimg = p.init_images[0]
#If img2img color correction is enabled in webui settings, color correction is performed based on the first frame.
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
#Save initial img2img image
initial_image = p.init_images[0]
# Get the total number of frames.
frame_num = get_min_frame_num(image_list)
# image processing
if frame_num > 0:
output_image_list = []
for frame in range(frame_num):
copy_p = copy.copy(p)
copy_p.control_net_input_image = []
for video in image_list:
if video is None:
continue
copy_p.control_net_input_image.append(video[frame])
if usetempo == True :
copy_p.control_net_input_image.append(tempoimg)
if color_image_list and feedprev == False:
if frame<len(color_image_list):
tone_image = color_image_list[frame+1]
if useinit:
tone_image = blend_images(initial_image, tone_image, blendm, opacityval, False)
p.init_images = [tone_image.convert("RGB")]
proc = process_images(copy_p)
if feedprev == True and useinit == False:
if previmg is None:
continue
else:
previmg = proc.images[0]
if frame == 0:
previmg = initial_image
p.init_images = [previmg]
if opts.img2img_color_correction:
p.color_corrections = initial_color_corrections
if feedprev == True and color_image_list and useinit:
if previmg is None:
continue
else:
previmg = proc.images[0]
if frame == 0:
previmg = initial_image
previmg = blend_images(previmg, color_image_list[frame+1], blendm, opacityval, False)
p.init_images = [previmg]
if opts.img2img_color_correction:
p.color_corrections = initial_color_corrections
img = proc.images[0]
if usetempo == True :
if frame > 0 :
tempoimg = proc.images[0]
#Save image
if(frame>0):
images.save_image(img, output_path, f"Frame_{frame}")
copy_p.close()
else:
proc = process_images(p)
return proc