DmitrMakeev
commited on
Commit
•
fee99f1
1
Parent(s):
cafa4f8
Upload 3 files
Browse files- script/ContorlNet_I2I_sequence_toyxyz_V2.py +367 -0
- script/loopback_wave.py +345 -0
- script/run_n_times.py +24 -0
script/ContorlNet_I2I_sequence_toyxyz_V2.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import modules.scripts as scripts
|
9 |
+
|
10 |
+
from modules import images, processing
|
11 |
+
from modules.processing import process_images, Processed
|
12 |
+
from modules.shared import opts
|
13 |
+
from PIL import Image, ImageFilter, ImageColor, ImageOps
|
14 |
+
from pathlib import Path
|
15 |
+
from typing import List, Tuple, Iterable
|
16 |
+
|
17 |
+
|
18 |
+
#Returns a list of images located in the input path. For ControlNet iamges
|
19 |
+
def get_all_frames_from_path(path):
|
20 |
+
if not os.path.isdir(path):
|
21 |
+
return None
|
22 |
+
frame_list = []
|
23 |
+
for filename in sorted(os.listdir(path)):
|
24 |
+
if filename.endswith(".jpg") or filename.endswith(".png"):
|
25 |
+
img_path = os.path.join(path, filename)
|
26 |
+
img = cv2.imread(img_path)
|
27 |
+
if img is not None:
|
28 |
+
frame_list.append(img)
|
29 |
+
frame_list.insert(0, frame_list[0])
|
30 |
+
return frame_list
|
31 |
+
|
32 |
+
|
33 |
+
#Returns a list of images located in the input path. For Color iamges
|
34 |
+
def get_images_from_path(path):
|
35 |
+
if not os.path.isdir(path):
|
36 |
+
return None
|
37 |
+
images = []
|
38 |
+
for filename in os.listdir(path):
|
39 |
+
if filename.endswith('.jpg') or filename.endswith('.png'):
|
40 |
+
img_path = os.path.join(path, filename)
|
41 |
+
img = Image.open(img_path)
|
42 |
+
images.append(img)
|
43 |
+
images.append(images[-1])
|
44 |
+
images.insert(0, images[0])
|
45 |
+
return images
|
46 |
+
|
47 |
+
#Returns the number of the smallest number in the entire image sequence list. For ControlNet
|
48 |
+
def get_min_frame_num(video_list):
|
49 |
+
min_frame_num = -1
|
50 |
+
for video in video_list:
|
51 |
+
if video is None:
|
52 |
+
continue
|
53 |
+
else:
|
54 |
+
frame_num = len(video)
|
55 |
+
print(frame_num)
|
56 |
+
if min_frame_num < 0:
|
57 |
+
min_frame_num = frame_num
|
58 |
+
elif frame_num < min_frame_num:
|
59 |
+
min_frame_num = frame_num
|
60 |
+
return min_frame_num
|
61 |
+
|
62 |
+
|
63 |
+
#Blende method
|
64 |
+
|
65 |
+
|
66 |
+
def basic(target, blend, opacity):
|
67 |
+
return target * opacity + blend * (1-opacity)
|
68 |
+
|
69 |
+
def blender(func):
|
70 |
+
def blend(target, blend, opacity=1, *args):
|
71 |
+
res = func(target, blend, *args)
|
72 |
+
res = basic(res, blend, opacity)
|
73 |
+
return np.clip(res, 0, 1)
|
74 |
+
return blend
|
75 |
+
|
76 |
+
|
77 |
+
class Blend:
|
78 |
+
@classmethod
|
79 |
+
def method(cls, name):
|
80 |
+
return getattr(cls, name)
|
81 |
+
|
82 |
+
normal = basic
|
83 |
+
|
84 |
+
@staticmethod
|
85 |
+
@blender
|
86 |
+
def darken(target, blend, *args):
|
87 |
+
return np.minimum(target, blend)
|
88 |
+
|
89 |
+
@staticmethod
|
90 |
+
@blender
|
91 |
+
def multiply(target, blend, *args):
|
92 |
+
return target * blend
|
93 |
+
|
94 |
+
@staticmethod
|
95 |
+
@blender
|
96 |
+
def color_burn(target, blend, *args):
|
97 |
+
return 1 - (1-target)/blend
|
98 |
+
|
99 |
+
@staticmethod
|
100 |
+
@blender
|
101 |
+
def linear_burn(target, blend, *args):
|
102 |
+
return target+blend-1
|
103 |
+
|
104 |
+
@staticmethod
|
105 |
+
@blender
|
106 |
+
def lighten(target, blend, *args):
|
107 |
+
return np.maximum(target, blend)
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
@blender
|
111 |
+
def screen(target, blend, *args):
|
112 |
+
return 1 - (1-target) * (1-blend)
|
113 |
+
|
114 |
+
@staticmethod
|
115 |
+
@blender
|
116 |
+
def color_dodge(target, blend, *args):
|
117 |
+
return target/(1-blend)
|
118 |
+
|
119 |
+
@staticmethod
|
120 |
+
@blender
|
121 |
+
def linear_dodge(target, blend, *args):
|
122 |
+
return target+blend
|
123 |
+
|
124 |
+
@staticmethod
|
125 |
+
@blender
|
126 |
+
def overlay(target, blend, *args):
|
127 |
+
return (target>0.5) * (1-(2-2*target)*(1-blend)) +\
|
128 |
+
(target<=0.5) * (2*target*blend)
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
@blender
|
132 |
+
def soft_light(target, blend, *args):
|
133 |
+
return (blend>0.5) * (1 - (1-target)*(1-(blend-0.5))) +\
|
134 |
+
(blend<=0.5) * (target*(blend+0.5))
|
135 |
+
|
136 |
+
@staticmethod
|
137 |
+
@blender
|
138 |
+
def hard_light(target, blend, *args):
|
139 |
+
return (blend>0.5) * (1 - (1-target)*(2-2*blend)) +\
|
140 |
+
(blend<=0.5) * (2*target*blend)
|
141 |
+
|
142 |
+
@staticmethod
|
143 |
+
@blender
|
144 |
+
def vivid_light(target, blend, *args):
|
145 |
+
return (blend>0.5) * (1 - (1-target)/(2*blend-1)) +\
|
146 |
+
(blend<=0.5) * (target/(1-2*blend))
|
147 |
+
|
148 |
+
@staticmethod
|
149 |
+
@blender
|
150 |
+
def linear_light(target, blend, *args):
|
151 |
+
return (blend>0.5) * (target + 2*(blend-0.5)) +\
|
152 |
+
(blend<=0.5) * (target + 2*blend)
|
153 |
+
|
154 |
+
@staticmethod
|
155 |
+
@blender
|
156 |
+
def pin_light(target, blend, *args):
|
157 |
+
return (blend>0.5) * np.maximum(target,2*(blend-0.5)) +\
|
158 |
+
(blend<=0.5) * np.minimum(target,2*blend)
|
159 |
+
|
160 |
+
@staticmethod
|
161 |
+
@blender
|
162 |
+
def difference(target, blend, *args):
|
163 |
+
return np.abs(target - blend)
|
164 |
+
|
165 |
+
@staticmethod
|
166 |
+
@blender
|
167 |
+
def exclusion(target, blend, *args):
|
168 |
+
return 0.5 - 2*(target-0.5)*(blend-0.5)
|
169 |
+
|
170 |
+
blend_methods = [i for i in Blend.__dict__.keys() if i[0]!='_' and i!='method']
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
def blend_images(base_img, blend_img, blend_method, blend_opacity, do_invert):
|
175 |
+
|
176 |
+
img_base = np.array(base_img.convert("RGB")).astype(np.float64)/255
|
177 |
+
|
178 |
+
if do_invert:
|
179 |
+
img_to_blend = ImageOps.invert(blend_img.convert('RGB'))
|
180 |
+
else:
|
181 |
+
img_to_blend = blend_img
|
182 |
+
|
183 |
+
img_to_blend = img_to_blend.resize((int(base_img.width), int(base_img.height)))
|
184 |
+
|
185 |
+
img_to_blend = np.array(img_to_blend.convert("RGB")).astype(np.float64)/255
|
186 |
+
|
187 |
+
img_blended = Blend.method(blend_method)(img_to_blend, img_base, blend_opacity)
|
188 |
+
|
189 |
+
img_blended *= 255
|
190 |
+
|
191 |
+
img_blended = Image.fromarray(img_blended.astype(np.uint8), mode='RGB')
|
192 |
+
|
193 |
+
return img_blended
|
194 |
+
|
195 |
+
|
196 |
+
#Define UI and script properties.
|
197 |
+
class Script(scripts.Script):
|
198 |
+
|
199 |
+
def title(self):
|
200 |
+
return "controlnet I2I sequence_toyxyz_v2"
|
201 |
+
|
202 |
+
def show(self, is_img2img):
|
203 |
+
return is_img2img
|
204 |
+
|
205 |
+
def ui(self, is_img2img):
|
206 |
+
|
207 |
+
ctrls_group = ()
|
208 |
+
max_models = opts.data.get("control_net_max_models_num", 1)
|
209 |
+
|
210 |
+
input_list = []
|
211 |
+
|
212 |
+
with gr.Group():
|
213 |
+
with gr.Accordion("ControlNet-I2I-sequence-toyxyz", open = True):
|
214 |
+
with gr.Column():
|
215 |
+
|
216 |
+
feed_prev_frame = gr.Checkbox(value=False, label="Feed previous frame / Reduce flickering by feeding the previous frame image generated by Img2Img")
|
217 |
+
|
218 |
+
use_init_img = gr.Checkbox(value=False, label="Blend color image / Blend the color image sequence with the initial Img2Img image or previous frame")
|
219 |
+
|
220 |
+
use_TemporalNet = gr.Checkbox(value=False, label="Use TemporalNet / Using TemporalNet to reduce flicker between image sequences. Add TemporalNet in addition to the multi-controlnet you need. It should be placed at the end of the controlnet list.")
|
221 |
+
|
222 |
+
blendmode = gr.Dropdown(blend_methods, value='normal', label='Blend mode / Choose how to blend the color image with the Previous frame or Img2Img initial image')
|
223 |
+
|
224 |
+
opacityvalue = gr.Slider(0, 1, value=0, label="Opacity / Previous frame or Img2Img initial image + (color image * opacity)", info="Choose betwen 0 and 1")
|
225 |
+
|
226 |
+
|
227 |
+
for i in range(max_models):
|
228 |
+
input_path = gr.Textbox(label=f"ControlNet-{i}", placeholder="image sequence path")
|
229 |
+
input_list.append(input_path)
|
230 |
+
|
231 |
+
tone_image_path = gr.Textbox(label=f"Color_Image / Color images to be used for Img2Img in sequence", placeholder="image sequence path")
|
232 |
+
|
233 |
+
output_path = gr.Textbox(label=f"Output_path / Deletes the contents located in the path, and creates a new path if it does not exist", placeholder="Output path")
|
234 |
+
|
235 |
+
ctrls_group += tuple(input_list) + (use_TemporalNet, use_init_img, opacityvalue, blendmode, feed_prev_frame, tone_image_path, output_path)
|
236 |
+
|
237 |
+
return ctrls_group
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
#Image Generate Definition
|
242 |
+
def run(self, p, *args):
|
243 |
+
|
244 |
+
path = p.outpath_samples
|
245 |
+
|
246 |
+
output_path = args[-1] # get the last argument, which is the output path
|
247 |
+
|
248 |
+
feedprev = args[-3]
|
249 |
+
|
250 |
+
blendm = args[-4]
|
251 |
+
|
252 |
+
opacityval = args[-5]
|
253 |
+
|
254 |
+
useinit = args[-6]
|
255 |
+
|
256 |
+
usetempo = args[-7]
|
257 |
+
|
258 |
+
|
259 |
+
# Check whether the output path exists, if it does, delete it and create a new one.
|
260 |
+
if os.path.isdir(output_path):
|
261 |
+
for file in os.scandir(output_path):
|
262 |
+
os.remove(file.path)
|
263 |
+
else :
|
264 |
+
os.mkdir(output_path)
|
265 |
+
|
266 |
+
#Get the number of controlnet models.
|
267 |
+
video_num = opts.data.get("control_net_max_models_num", 1)
|
268 |
+
|
269 |
+
# Get the ControlNet image sequence list.
|
270 |
+
image_list = [get_all_frames_from_path(image) for image in args[:video_num]]
|
271 |
+
|
272 |
+
# Get a list of color image sequences.
|
273 |
+
color_image_list = get_images_from_path(args[-2])
|
274 |
+
|
275 |
+
# Get the first frame
|
276 |
+
previmg = p.init_images
|
277 |
+
|
278 |
+
tempoimg = p.init_images[0]
|
279 |
+
|
280 |
+
#If img2img color correction is enabled in webui settings, color correction is performed based on the first frame.
|
281 |
+
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
|
282 |
+
|
283 |
+
#Save initial img2img image
|
284 |
+
initial_image = p.init_images[0]
|
285 |
+
|
286 |
+
# Get the total number of frames.
|
287 |
+
frame_num = get_min_frame_num(image_list)
|
288 |
+
|
289 |
+
# image processing
|
290 |
+
if frame_num > 0:
|
291 |
+
output_image_list = []
|
292 |
+
|
293 |
+
for frame in range(frame_num):
|
294 |
+
copy_p = copy.copy(p)
|
295 |
+
copy_p.control_net_input_image = []
|
296 |
+
for video in image_list:
|
297 |
+
if video is None:
|
298 |
+
continue
|
299 |
+
copy_p.control_net_input_image.append(video[frame])
|
300 |
+
|
301 |
+
if usetempo == True :
|
302 |
+
copy_p.control_net_input_image.append(tempoimg)
|
303 |
+
|
304 |
+
|
305 |
+
if color_image_list and feedprev == False:
|
306 |
+
|
307 |
+
if frame<len(color_image_list):
|
308 |
+
tone_image = color_image_list[frame+1]
|
309 |
+
|
310 |
+
if useinit:
|
311 |
+
tone_image = blend_images(initial_image, tone_image, blendm, opacityval, False)
|
312 |
+
|
313 |
+
p.init_images = [tone_image.convert("RGB")]
|
314 |
+
|
315 |
+
proc = process_images(copy_p)
|
316 |
+
|
317 |
+
|
318 |
+
|
319 |
+
if feedprev == True and useinit == False:
|
320 |
+
if previmg is None:
|
321 |
+
continue
|
322 |
+
else:
|
323 |
+
previmg = proc.images[0]
|
324 |
+
|
325 |
+
if frame == 0:
|
326 |
+
previmg = initial_image
|
327 |
+
|
328 |
+
p.init_images = [previmg]
|
329 |
+
|
330 |
+
if opts.img2img_color_correction:
|
331 |
+
p.color_corrections = initial_color_corrections
|
332 |
+
|
333 |
+
|
334 |
+
if feedprev == True and color_image_list and useinit:
|
335 |
+
if previmg is None:
|
336 |
+
continue
|
337 |
+
else:
|
338 |
+
previmg = proc.images[0]
|
339 |
+
|
340 |
+
if frame == 0:
|
341 |
+
previmg = initial_image
|
342 |
+
|
343 |
+
previmg = blend_images(previmg, color_image_list[frame+1], blendm, opacityval, False)
|
344 |
+
|
345 |
+
|
346 |
+
p.init_images = [previmg]
|
347 |
+
|
348 |
+
if opts.img2img_color_correction:
|
349 |
+
p.color_corrections = initial_color_corrections
|
350 |
+
|
351 |
+
img = proc.images[0]
|
352 |
+
|
353 |
+
if usetempo == True :
|
354 |
+
if frame > 0 :
|
355 |
+
tempoimg = proc.images[0]
|
356 |
+
|
357 |
+
|
358 |
+
#Save image
|
359 |
+
if(frame>0):
|
360 |
+
images.save_image(img, output_path, f"Frame_{frame}")
|
361 |
+
copy_p.close()
|
362 |
+
|
363 |
+
|
364 |
+
else:
|
365 |
+
proc = process_images(p)
|
366 |
+
|
367 |
+
return proc
|
script/loopback_wave.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import platform
|
3 |
+
import numpy as np
|
4 |
+
from tqdm import trange
|
5 |
+
import math
|
6 |
+
import subprocess as sp
|
7 |
+
import string
|
8 |
+
import random
|
9 |
+
from functools import reduce
|
10 |
+
import re
|
11 |
+
|
12 |
+
import modules.scripts as scripts
|
13 |
+
import gradio as gr
|
14 |
+
|
15 |
+
from modules import processing, shared, sd_samplers, images
|
16 |
+
from modules.processing import Processed
|
17 |
+
from modules.sd_samplers import samplers
|
18 |
+
from modules.shared import opts, cmd_opts, state
|
19 |
+
import subprocess
|
20 |
+
|
21 |
+
|
22 |
+
wave_completed_regex = r'@wave_completed\(([\-]?[0-9]*\.?[0-9]+), ?([\-]?[0-9]*\.?[0-9]+)\)'
|
23 |
+
wave_remaining_regex = r'@wave_remaining\(([\-]?[0-9]*\.?[0-9]+), ?([\-]?[0-9]*\.?[0-9]+)\)'
|
24 |
+
|
25 |
+
def run_cmd(cmd):
|
26 |
+
cmd = list(map(lambda arg: str(arg), cmd))
|
27 |
+
print("Executing %s" % " ".join(cmd))
|
28 |
+
popen_params = {"stdout": sp.DEVNULL, "stderr": sp.PIPE, "stdin": sp.DEVNULL}
|
29 |
+
|
30 |
+
if os.name == "nt":
|
31 |
+
popen_params["creationflags"] = 0x08000000
|
32 |
+
|
33 |
+
proc = sp.Popen(cmd, **popen_params)
|
34 |
+
out, err = proc.communicate() # proc.wait()
|
35 |
+
proc.stderr.close()
|
36 |
+
|
37 |
+
if proc.returncode:
|
38 |
+
raise IOError(err.decode("utf8"))
|
39 |
+
|
40 |
+
del proc
|
41 |
+
|
42 |
+
def encode_video(input_pattern, starting_number, output_dir, fps, quality, encoding, create_segments, segment_duration, ffmpeg_path):
|
43 |
+
two_pass = (encoding == "VP9 (webm)")
|
44 |
+
alpha_channel = ("webm" in encoding)
|
45 |
+
suffix = "webm" if "webm" in encoding else "mp4"
|
46 |
+
output_location = output_dir + f".{suffix}"
|
47 |
+
|
48 |
+
encoding_lib = {
|
49 |
+
"VP9 (webm)": "libvpx-vp9",
|
50 |
+
"VP8 (webm)": "libvpx",
|
51 |
+
"H.264 (mp4)": "libx264",
|
52 |
+
"H.265 (mp4)": "libx265",
|
53 |
+
}[encoding]
|
54 |
+
|
55 |
+
args = [
|
56 |
+
"-framerate", fps,
|
57 |
+
"-start_number", int(starting_number),
|
58 |
+
"-i", input_pattern,
|
59 |
+
"-c:v", encoding_lib,
|
60 |
+
"-b:v","0",
|
61 |
+
"-crf", quality,
|
62 |
+
]
|
63 |
+
|
64 |
+
if encoding_lib == "libvpx-vp9":
|
65 |
+
args += ["-pix_fmt", "yuva420p"]
|
66 |
+
|
67 |
+
if(ffmpeg_path == ""):
|
68 |
+
ffmpeg_path = "ffmpeg"
|
69 |
+
if(platform.system == "Windows"):
|
70 |
+
ffmpeg_path += ".exe"
|
71 |
+
|
72 |
+
print("\n\n")
|
73 |
+
if two_pass:
|
74 |
+
first_pass_args = args + [
|
75 |
+
"-pass", "1",
|
76 |
+
"-an",
|
77 |
+
"-f", "null",
|
78 |
+
os.devnull
|
79 |
+
]
|
80 |
+
|
81 |
+
second_pass_args = args + [
|
82 |
+
"-pass", "2",
|
83 |
+
output_location
|
84 |
+
]
|
85 |
+
|
86 |
+
print("Running first pass ffmpeg encoding")
|
87 |
+
|
88 |
+
run_cmd([ffmpeg_path] + first_pass_args)
|
89 |
+
print("Running second pass ffmpeg encoding. This could take awhile...")
|
90 |
+
run_cmd([ffmpeg_path] + second_pass_args)
|
91 |
+
else:
|
92 |
+
print("Running ffmpeg encoding. This could take awhile...")
|
93 |
+
run_cmd([ffmpeg_path] + args + [output_location])
|
94 |
+
|
95 |
+
if(create_segments):
|
96 |
+
print("Segmenting video")
|
97 |
+
run_cmd([ffmpeg_path] + [
|
98 |
+
"-i", output_location,
|
99 |
+
"-f", "segment",
|
100 |
+
"-segment_time", segment_duration,
|
101 |
+
"-vcodec", "copy",
|
102 |
+
"-acodec", "copy",
|
103 |
+
f"{output_dir}.%d.{suffix}"
|
104 |
+
])
|
105 |
+
|
106 |
+
def set_weights(match_obj, wave_progress):
|
107 |
+
weight_0 = 0
|
108 |
+
weight_1 = 0
|
109 |
+
if match_obj.group(1) is not None:
|
110 |
+
weight_0 = float(match_obj.group(1))
|
111 |
+
if match_obj.group(2) is not None:
|
112 |
+
weight_1 = float(match_obj.group(2))
|
113 |
+
|
114 |
+
max_weight = max(weight_0, weight_1)
|
115 |
+
min_weight = min(weight_0, weight_1)
|
116 |
+
|
117 |
+
weight_range = max_weight - min_weight
|
118 |
+
weight = min_weight + weight_range * wave_progress
|
119 |
+
return str(weight)
|
120 |
+
|
121 |
+
|
122 |
+
class Script(scripts.Script):
|
123 |
+
def title(self):
|
124 |
+
return "Loopback Wave V1.4.1"
|
125 |
+
|
126 |
+
def show(self, is_img2img):
|
127 |
+
return is_img2img
|
128 |
+
|
129 |
+
def ui(self, is_img2img):
|
130 |
+
frames = gr.Slider(minimum=1, maximum=2048, step=1, label='Frames', value=100)
|
131 |
+
frames_per_wave = gr.Slider(minimum=0, maximum=120, step=1, label='Frames Per Wave', value=20)
|
132 |
+
denoising_strength_change_amplitude = gr.Slider(minimum=0, maximum=1, step=0.01, label='Max additional denoise', value=0.6)
|
133 |
+
denoising_strength_change_offset = gr.Number(minimum=0, maximum=180, step=1, label='Wave offset (ignore this if you don\'t know what it means)', value=0)
|
134 |
+
initial_image_number = gr.Number(minimum=0, label='Initial generated image number', value=0)
|
135 |
+
|
136 |
+
save_prompts = gr.Checkbox(label='Save prompts as text file', value=True)
|
137 |
+
prompts = gr.Textbox(label="Prompt Changes", lines=5, value="")
|
138 |
+
|
139 |
+
save_video = gr.Checkbox(label='Save results as video', value=True)
|
140 |
+
output_dir = gr.Textbox(label="Video Name", lines=1, value="")
|
141 |
+
video_fps = gr.Slider(minimum=1, maximum=120, step=1, label='Frames per second', value=10)
|
142 |
+
video_quality = gr.Slider(minimum=0, maximum=60, step=1, label='Video Quality (crf)', value=40)
|
143 |
+
video_encoding = gr.Dropdown(label='Video encoding', value="VP9 (webm)", choices=["VP9 (webm)", "VP8 (webm)", "H.265 (mp4)", "H.264 (mp4)"])
|
144 |
+
ffmpeg_path = gr.Textbox(label="ffmpeg binary. Only set this if it fails otherwise.", lines=1, value="")
|
145 |
+
|
146 |
+
segment_video = gr.Checkbox(label='Cut video in to segments', value=True)
|
147 |
+
video_segment_duration = gr.Slider(minimum=10, maximum=60, step=1, label='Video Segment Duration (seconds)', value=20)
|
148 |
+
|
149 |
+
|
150 |
+
return [frames, denoising_strength_change_amplitude, frames_per_wave, denoising_strength_change_offset,initial_image_number, prompts, save_prompts, save_video, output_dir, video_fps, video_quality, video_encoding, ffmpeg_path, segment_video, video_segment_duration]
|
151 |
+
|
152 |
+
def run(self, p, frames, denoising_strength_change_amplitude, frames_per_wave, denoising_strength_change_offset, initial_image_number, prompts: str,save_prompts, save_video, output_dir, video_fps, video_quality, video_encoding, ffmpeg_path, segment_video, video_segment_duration):
|
153 |
+
processing.fix_seed(p)
|
154 |
+
batch_count = p.n_iter
|
155 |
+
p.extra_generation_params = {
|
156 |
+
"Max Additional Denoise": denoising_strength_change_amplitude,
|
157 |
+
"Frames per wave": frames_per_wave,
|
158 |
+
"Wave Offset": denoising_strength_change_offset,
|
159 |
+
}
|
160 |
+
|
161 |
+
# We save them ourselves for the sake of ffmpeg
|
162 |
+
p.do_not_save_samples = True
|
163 |
+
|
164 |
+
changes_dict = {}
|
165 |
+
|
166 |
+
|
167 |
+
p.batch_size = 1
|
168 |
+
p.n_iter = 1
|
169 |
+
|
170 |
+
output_images, info = None, None
|
171 |
+
initial_seed = None
|
172 |
+
initial_info = None
|
173 |
+
|
174 |
+
grids = []
|
175 |
+
all_images = []
|
176 |
+
original_init_image = p.init_images
|
177 |
+
state.job_count = frames * batch_count
|
178 |
+
|
179 |
+
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
|
180 |
+
initial_denoising_strength = p.denoising_strength
|
181 |
+
|
182 |
+
if(output_dir==""):
|
183 |
+
output_dir = str(p.seed)
|
184 |
+
else:
|
185 |
+
output_dir = output_dir + "-" + str(p.seed)
|
186 |
+
|
187 |
+
loopback_wave_path = os.path.join(p.outpath_samples, "loopback-wave")
|
188 |
+
loopback_wave_images_path = os.path.join(loopback_wave_path, output_dir)
|
189 |
+
|
190 |
+
os.makedirs(loopback_wave_images_path, exist_ok=True)
|
191 |
+
|
192 |
+
p.outpath_samples = loopback_wave_images_path
|
193 |
+
|
194 |
+
prompts = prompts.strip()
|
195 |
+
|
196 |
+
if save_prompts:
|
197 |
+
with open(loopback_wave_images_path + "-prompts.txt", "w") as f:
|
198 |
+
generation_settings = [
|
199 |
+
"Generation Settings",
|
200 |
+
f"Total Frames: {frames}",
|
201 |
+
f"Frames Per Wave: {frames_per_wave}",
|
202 |
+
f"Wave Offset: {denoising_strength_change_offset}",
|
203 |
+
f"Base Denoising Strength: {initial_denoising_strength}",
|
204 |
+
f"Max Additional Denoise: {denoising_strength_change_amplitude}",
|
205 |
+
f"Initial Image Number: {initial_image_number}",
|
206 |
+
"",
|
207 |
+
"Video Encoding Settings",
|
208 |
+
f"Save Video: {save_video}"
|
209 |
+
]
|
210 |
+
|
211 |
+
if save_video:
|
212 |
+
generation_settings = generation_settings + [
|
213 |
+
f"Framerate: {video_fps}",
|
214 |
+
f"Quality: {video_quality}",
|
215 |
+
f"Encoding: {video_encoding}",
|
216 |
+
f"Create Segmented Video: {segment_video}"
|
217 |
+
]
|
218 |
+
|
219 |
+
if segment_video:
|
220 |
+
generation_settings = generation_settings + [f"Segment Duration: {video_segment_duration}"]
|
221 |
+
|
222 |
+
generation_settings = generation_settings + [
|
223 |
+
"",
|
224 |
+
"Prompt Details",
|
225 |
+
"Initial Prompt:" + p.prompt,
|
226 |
+
"",
|
227 |
+
"Negative Prompt:" + p.negative_prompt,
|
228 |
+
"",
|
229 |
+
"Frame change prompts:",
|
230 |
+
prompts
|
231 |
+
]
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
f.write('\n'.join(generation_settings))
|
236 |
+
|
237 |
+
if prompts:
|
238 |
+
lines = prompts.split("\n")
|
239 |
+
for prompt_line in lines:
|
240 |
+
params = prompt_line.split("::")
|
241 |
+
if len(params) == 2:
|
242 |
+
changes_dict[params[0]] = { "prompt": params[1] }
|
243 |
+
elif len(params) == 3:
|
244 |
+
changes_dict[params[0]] = { "seed": params[1], "prompt": params[2] }
|
245 |
+
else:
|
246 |
+
raise IOError(f"Invalid input in prompt line: {prompt_line}")
|
247 |
+
|
248 |
+
raw_prompt = p.prompt
|
249 |
+
|
250 |
+
for n in range(batch_count):
|
251 |
+
history = []
|
252 |
+
|
253 |
+
# Reset to original init image at the start of each batch
|
254 |
+
p.init_images = original_init_image
|
255 |
+
|
256 |
+
seed_state = "adding"
|
257 |
+
current_seed = p.seed
|
258 |
+
|
259 |
+
for i in range(frames):
|
260 |
+
current_seed = p.seed
|
261 |
+
state.job = ""
|
262 |
+
|
263 |
+
if str(i) in changes_dict:
|
264 |
+
raw_prompt = changes_dict[str(i)]["prompt"]
|
265 |
+
state.job = "New prompt: %s\n" % raw_prompt
|
266 |
+
|
267 |
+
if "seed" in changes_dict[str(i)]:
|
268 |
+
current_seed = changes_dict[str(i)]["seed"]
|
269 |
+
|
270 |
+
if current_seed.startswith("+"):
|
271 |
+
seed_state = "adding"
|
272 |
+
current_seed = current_seed.strip("+")
|
273 |
+
elif current_seed.startswith("-"):
|
274 |
+
seed_state = "subtracting"
|
275 |
+
current_seed = current_seed.strip("-")
|
276 |
+
else:
|
277 |
+
seed_state = "constant"
|
278 |
+
|
279 |
+
current_seed = int(current_seed)
|
280 |
+
p.seed = current_seed
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
p.n_iter = 1
|
285 |
+
p.batch_size = 1
|
286 |
+
p.do_not_save_grid = True
|
287 |
+
|
288 |
+
if opts.img2img_color_correction:
|
289 |
+
p.color_corrections = initial_color_corrections
|
290 |
+
|
291 |
+
|
292 |
+
wave_progress = float(1)/(float(frames_per_wave - 1))*float(((float(i)%float(frames_per_wave)) + ((float(1)/float(180))*denoising_strength_change_offset)))
|
293 |
+
print(wave_progress)
|
294 |
+
new_prompt = re.sub(wave_completed_regex, lambda x: set_weights(x, wave_progress), raw_prompt)
|
295 |
+
new_prompt = re.sub(wave_remaining_regex, lambda x: set_weights(x, 1 - wave_progress), new_prompt)
|
296 |
+
p.prompt = new_prompt
|
297 |
+
|
298 |
+
print(new_prompt)
|
299 |
+
|
300 |
+
denoising_strength_change_rate = 180/frames_per_wave
|
301 |
+
|
302 |
+
cos = abs(math.cos(math.radians(i*denoising_strength_change_rate + denoising_strength_change_offset)))
|
303 |
+
p.denoising_strength = initial_denoising_strength + denoising_strength_change_amplitude - (cos * denoising_strength_change_amplitude)
|
304 |
+
|
305 |
+
state.job += f"Iteration {i + 1}/{frames}, batch {n + 1}/{batch_count}. Denoising Strength: {p.denoising_strength}"
|
306 |
+
|
307 |
+
processed = processing.process_images(p)
|
308 |
+
|
309 |
+
if initial_seed is None:
|
310 |
+
initial_seed = processed.seed
|
311 |
+
initial_info = processed.info
|
312 |
+
|
313 |
+
init_img = processed.images[0]
|
314 |
+
|
315 |
+
p.init_images = [init_img]
|
316 |
+
|
317 |
+
if seed_state == "adding":
|
318 |
+
p.seed = processed.seed + 1
|
319 |
+
elif seed_state == "subtracting":
|
320 |
+
p.seed = processed.seed - 1
|
321 |
+
|
322 |
+
image_number = int(initial_image_number + i)
|
323 |
+
images.save_image(init_img, p.outpath_samples, "", processed.seed, processed.prompt, forced_filename=str(image_number))
|
324 |
+
|
325 |
+
history.append(init_img)
|
326 |
+
|
327 |
+
grid = images.image_grid(history, rows=1)
|
328 |
+
if opts.grid_save:
|
329 |
+
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
|
330 |
+
|
331 |
+
grids.append(grid)
|
332 |
+
all_images += history
|
333 |
+
|
334 |
+
if opts.return_grid:
|
335 |
+
all_images = grids + all_images
|
336 |
+
|
337 |
+
if save_video:
|
338 |
+
input_pattern = os.path.join(loopback_wave_images_path, "%d.png")
|
339 |
+
encode_video(input_pattern, initial_image_number, loopback_wave_images_path, video_fps, video_quality, video_encoding, segment_video, video_segment_duration, ffmpeg_path)
|
340 |
+
|
341 |
+
processed = Processed(p, all_images, initial_seed, initial_info)
|
342 |
+
|
343 |
+
return processed
|
344 |
+
|
345 |
+
|
script/run_n_times.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import traceback
|
5 |
+
|
6 |
+
import modules.scripts as scripts
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from modules.processing import Processed, process_images
|
10 |
+
|
11 |
+
class Script(scripts.Script):
|
12 |
+
def title(self):
|
13 |
+
return "Run n times"
|
14 |
+
|
15 |
+
def ui(self, is_img2img):
|
16 |
+
n = gr.Textbox(label="n")
|
17 |
+
return [n]
|
18 |
+
|
19 |
+
def run(self, p, n):
|
20 |
+
for x in range(int(n)):
|
21 |
+
p.seed = -1
|
22 |
+
proc = process_images(p)
|
23 |
+
image = proc.images
|
24 |
+
return Processed(p, image, p.seed, proc.info)
|