File size: 27,156 Bytes
df43f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1746
- loss:CosineSimilarityLoss
base_model: sentence-transformers/distilbert-base-nli-mean-tokens
datasets: []
widget:
- source_sentence: Scalloped Corn ["1 can cream-style corn", "1 can whole kernel corn",
    "1/2 pkg. (approximately 20) saltine crackers, crushed", "1 egg, beaten", "6 tsp.
    butter, divided", "pepper to taste"] ["Mix together both cans of corn, crackers,
    egg, 2 teaspoons of melted butter and pepper and place in a buttered baking dish.",
    "Dot with remaining 4 teaspoons of butter.", "Bake at 350\u00b0 for 1 hour."]
  sentences:
  - Artichoke Dip ["2 cans or jars artichoke hearts", "1 c. mayonnaise", "1 c. Parmesan
    cheese"] ["Drain artichokes and chop.", "Mix with mayonnaise and Parmesan cheese.",
    "After well mixed, bake, uncovered, for 20 to 30 minutes at 350\u00b0.", "Serve
    with crackers."]
  - Scalloped Corn ["1 can cream-style corn", "1 can whole kernel corn", "1/2 pkg.
    (approximately 20) saltine crackers, crushed", "1 egg, beaten", "6 tsp. butter,
    divided", "pepper to taste"] ["Mix together both cans of corn, crackers, egg,
    2 teaspoons of melted butter and pepper and place in a buttered baking dish.",
    "Dot with remaining 4 teaspoons of butter.", "Bake at 350\u00b0 for 1 hour."]
  - Chicken Stew ["3 lb. chicken, boiled", "4 medium potatoes, diced", "2 medium onions,
    chopped", "1 (16 oz.) can creamed corn", "1 (16 oz.) can English peas", "1 (16
    oz.) can field peas", "1 (16 oz.) can butter beans", "1 (16 oz.) can tomatoes",
    "1 (46 oz.) can tomato juice", "1 small box macaroni", "1 Tbsp. black pepper",
    "1 Tbsp. salt", "1 Tbsp. sugar"] ["Remove chicken from bone.", "Use the broth.",
    "Mix the vegetables and macaroni.", "Add sugar, salt and black pepper.", "Cook
    until all vegetables are tender over medium heat."]
- source_sentence: Watermelon Rind Pickles ["7 lb. watermelon rind", "7 c. sugar",
    "2 c. apple vinegar", "1/2 tsp. oil of cloves", "1/2 tsp. oil of cinnamon"] ["Trim
    off green and pink parts of watermelon rind; cut to 1-inch cubes.", "Parboil until
    tender, but not soft.", "Drain. Combine sugar, vinegar, oil of cloves and oil
    of cinnamon; bring to boiling and pour over rind.", "Let stand overnight.", "In
    the morning, drain off syrup.", "Heat and put over rind.", "The third morning,
    heat rind and syrup; seal in hot, sterilized jars.", "Makes 8 pints.", "(Oil of
    cinnamon and clove keeps rind clear and transparent.)"]
  sentences:
  - Cheeseburger Potato Soup ["6 baking potatoes", "1 lb. of extra lean ground beef",
    "2/3 c. butter or margarine", "6 c. milk", "3/4 tsp. salt", "1/2 tsp. pepper",
    "1 1/2 c (6 oz.) shredded Cheddar cheese, divided", "12 sliced bacon, cooked,
    crumbled and divided", "4 green onion, chopped and divided", "1 (8 oz.) carton
    sour cream (optional)"] ["Wash potatoes; prick several times with a fork.", "Microwave
    them with a wet paper towel covering the potatoes on high for 6-8 minutes.", "The
    potatoes should be soft, ready to eat.", "Let them cool enough to handle.", "Cut
    in half lengthwise; scoop out pulp and reserve.", "Discard shells.", "Brown ground
    beef until done.", "Drain any grease from the meat.", "Set aside when done.",
    "Meat will be added later.", "Melt butter in a large kettle over low heat; add
    flour, stirring until smooth.", "Cook 1 minute, stirring constantly. Gradually
    add milk; cook over medium heat, stirring constantly, until thickened and bubbly.",
    "Stir in potato, ground beef, salt, pepper, 1 cup of cheese, 2 tablespoons of
    green onion and 1/2 cup of bacon.", "Cook until heated (do not boil).", "Stir
    in sour cream if desired; cook until heated (do not boil).", "Sprinkle with remaining
    cheese, bacon and green onions."]
  - Easy Fudge ["1 (14 oz.) can sweetened condensed milk", "1 (12 oz.) pkg. semi-sweet
    chocolate chips", "1 (1 oz.) sq. unsweetened chocolate (if desired)", "1 1/2 c.
    chopped nuts (if desired)", "1 tsp. vanilla"] ["Butter a square pan, 8 x 8 x 2-inches.",
    "Heat milk, chocolate chips and unsweetened chocolate over low heat, stirring
    constantly, until chocolate is melted and mixture is smooth. Remove from heat.",
    "Stir in nuts and vanilla.", "Spread in pan."]
  - Chicken Ole ["4 chicken breasts, cooked", "1 can cream of chicken soup", "1 can
    cream of mushroom soup", "1 can green chili salsa sauce", "1 can green chilies",
    "1 c. milk", "1 grated onion", "1 pkg. corn tortilla in pieces"] ["Dice chicken.",
    "Mix all ingredients together.", "Let sit overnight.", "Bake 1 1/2 hours at 375\u00b0."]
- source_sentence: Quick Barbecue Wings ["chicken wings (as many as you need for dinner)",
    "flour", "barbecue sauce (your choice)"] ["Clean wings.", "Flour and fry until
    done.", "Place fried chicken wings in microwave bowl.", "Stir in barbecue sauce.",
    "Microwave on High (stir once) for 4 minutes."]
  sentences:
  - Creamy Corn ["2 (16 oz.) pkg. frozen corn", "1 (8 oz.) pkg. cream cheese, cubed",
    "1/3 c. butter, cubed", "1/2 tsp. garlic powder", "1/2 tsp. salt", "1/4 tsp. pepper"]
    ["In a slow cooker, combine all ingredients. Cover and cook on low for 4 hours
    or until heated through and cheese is melted. Stir well before serving. Yields
    6 servings."]
  - Broccoli Salad ["1 large head broccoli (about 1 1/2 lb.)", "10 slices bacon, cooked
    and crumbled", "5 green onions, sliced or 1/4 c. chopped red onion", "1/2 c. raisins",
    "1 c. mayonnaise", "2 Tbsp. vinegar", "1/4 c. sugar"] ["Trim off large leaves
    of broccoli and remove the tough ends of lower stalks. Wash the broccoli thoroughly.
    Cut the florets and stems into bite-size pieces. Place in a large bowl. Add bacon,
    onions and raisins. Combine remaining ingredients, stirring well. Add dressing
    to broccoli mixture and toss gently. Cover and refrigerate 2 to 3 hours. Makes
    about 6 servings."]
  - Vegetable-Burger Soup ["1/2 lb. ground beef", "2 c. water", "1 tsp. sugar", "1
    pkg. Cup-a-Soup onion soup mix (dry)", "1 lb. can stewed tomatoes", "1 (8 oz.)
    can tomato sauce", "1 (10 oz.) pkg. frozen mixed vegetables"] ["Lightly brown
    beef in soup pot.", "Drain off excess fat.", "Stir in tomatoes, tomato sauce,
    water, frozen vegetables, soup mix and sugar.", "Bring to a boil.", "Reduce heat
    and simmer for 20 minutes. Serve."]
- source_sentence: 'Eggless Milkless Applesauce Cake ["3/4 c. sugar", "1/2 c. shortening",
    "1 1/2 c. applesauce", "3 level tsp. soda", "1 tsp. each: cinnamon, cloves and
    nutmeg", "2 c. sifted flour", "1 c. raisins", "1 c. nuts"] ["Mix Crisco with applesauce,
    nuts and raisins.", "Sift dry ingredients and add.", "Mix well.", "Put in a greased
    and floured loaf pan or tube pan.", "Bake in loaf pan at 350\u00b0 to 375\u00b0
    for 45 to 60 minutes, layer pan at 375\u00b0 for 20 minutes or tube pan at 325\u00b0
    for 1 hour."]'
  sentences:
  - Broccoli Dip For Crackers ["16 oz. sour cream", "1 pkg. dry vegetable soup mix",
    "10 oz. pkg. frozen chopped broccoli, thawed and drained", "4 to 6 oz. Cheddar
    cheese, grated"] ["Mix together sour cream, soup mix, broccoli and half of cheese.",
    "Sprinkle remaining cheese on top.", "Bake at 350\u00b0 for 30 minutes, uncovered.",
    "Serve hot with vegetable crackers."]
  - Potato And Cheese Pie ["3 eggs", "1 tsp. salt", "1/4 tsp. pepper", "2 c. half
    and half", "3 c. potatoes, shredded coarse", "1 c. Cheddar cheese, coarsely shredded",
    "1/3 c. green onions"] ["Beat eggs, salt and pepper until well blended.", "Stir
    in half and half, potatoes and onions.", "Pour into well-greased 8-inch baking
    dish.", "Bake in a 400\u00b0 oven for 35 to 40 minutes, or until knife inserted
    in center comes out clean and potatoes are tender. Cool on rack 5 minutes; cut
    into squares.", "Makes 4 large servings."]
  - Angel Biscuits ["5 c. flour", "3 Tbsp. sugar", "4 tsp. baking powder", "1 1/2
    pkg. dry yeast", "2 c. buttermilk", "1 tsp. soda", "1 1/2 sticks margarine", "1/2
    c. warm water"] ["Mix flour, sugar, baking powder, soda and salt together.", "Cut
    in margarine, dissolve yeast in warm water.", "Stir into buttermilk and add to
    dry mixture.", "Cover and chill."]
- source_sentence: Rhubarb Coffee Cake ["1 1/2 c. sugar", "1/2 c. butter", "1 egg",
    "1 c. buttermilk", "2 c. flour", "1/2 tsp. salt", "1 tsp. soda", "1 c. buttermilk",
    "2 c. rhubarb, finely cut", "1 tsp. vanilla"] ["Cream sugar and butter.", "Add
    egg and beat well.", "To creamed butter, sugar and egg, add alternately buttermilk
    with mixture of flour, salt and soda.", "Mix well.", "Add rhubarb and vanilla.",
    "Pour into greased 9 x 13-inch pan and add Topping."]
  sentences:
  - Prize-Winning Meat Loaf ["1 1/2 lb. ground beef", "1 c. tomato juice", "3/4 c.
    oats (uncooked)", "1 egg, beaten", "1/4 c. chopped onion", "1/4 tsp. pepper",
    "1 1/2 tsp. salt"] ["Mix well.", "Press firmly into an 8 1/2 x 4 1/2 x 2 1/2-inch
    loaf pan.", "Bake in preheated moderate oven.", "Bake at 350\u00b0 for 1 hour.",
    "Let stand 5 minutes before slicing.", "Makes 8 servings."]
  - Angel Biscuits ["5 c. flour", "3 Tbsp. sugar", "4 tsp. baking powder", "1 1/2
    pkg. dry yeast", "2 c. buttermilk", "1 tsp. soda", "1 1/2 sticks margarine", "1/2
    c. warm water"] ["Mix flour, sugar, baking powder, soda and salt together.", "Cut
    in margarine, dissolve yeast in warm water.", "Stir into buttermilk and add to
    dry mixture.", "Cover and chill."]
  - 'Smothered Round Steak(Servings: 4)   ["2 lb. round steak", "1/2 tsp. ground black
    pepper", "1 tsp. ground white pepper", "1/2 c. vegetable oil", "2 bell peppers,
    chopped", "1 c. beef stock or water", "2 tsp. salt", "1 tsp. ground red pepper",
    "all-purpose flour (dredging)", "3 medium onions, chopped", "1 celery rib, chopped"]
    ["Alex Patout says, \"Smothering is a multipurpose Cajun technique that works
    wonders with everything from game to snap beans.", "It''s similar to what the
    rest of the world knows as braising.", "The ingredients are briefly browned or
    sauteed, then cooked with a little liquid over a low heat for a long time.\""]'
pipeline_tag: sentence-similarity
---

# SentenceTransformer based on sentence-transformers/distilbert-base-nli-mean-tokens

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/distilbert-base-nli-mean-tokens](https://huggingface.co/sentence-transformers/distilbert-base-nli-mean-tokens). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/distilbert-base-nli-mean-tokens](https://huggingface.co/sentence-transformers/distilbert-base-nli-mean-tokens) <!-- at revision 2781c006adbf3726b509caa8649fc8077ff0724d -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("DivyaMereddy007/RecipeBert_v5original_epoc50_Copy_of_TrainSetenceTransforme-Finetuning_v5_DistilledBert")
# Run inference
sentences = [
    'Rhubarb Coffee Cake ["1 1/2 c. sugar", "1/2 c. butter", "1 egg", "1 c. buttermilk", "2 c. flour", "1/2 tsp. salt", "1 tsp. soda", "1 c. buttermilk", "2 c. rhubarb, finely cut", "1 tsp. vanilla"] ["Cream sugar and butter.", "Add egg and beat well.", "To creamed butter, sugar and egg, add alternately buttermilk with mixture of flour, salt and soda.", "Mix well.", "Add rhubarb and vanilla.", "Pour into greased 9 x 13-inch pan and add Topping."]',
    'Prize-Winning Meat Loaf ["1 1/2 lb. ground beef", "1 c. tomato juice", "3/4 c. oats (uncooked)", "1 egg, beaten", "1/4 c. chopped onion", "1/4 tsp. pepper", "1 1/2 tsp. salt"] ["Mix well.", "Press firmly into an 8 1/2 x 4 1/2 x 2 1/2-inch loaf pan.", "Bake in preheated moderate oven.", "Bake at 350\\u00b0 for 1 hour.", "Let stand 5 minutes before slicing.", "Makes 8 servings."]',
    'Angel Biscuits ["5 c. flour", "3 Tbsp. sugar", "4 tsp. baking powder", "1 1/2 pkg. dry yeast", "2 c. buttermilk", "1 tsp. soda", "1 1/2 sticks margarine", "1/2 c. warm water"] ["Mix flour, sugar, baking powder, soda and salt together.", "Cut in margarine, dissolve yeast in warm water.", "Stir into buttermilk and add to dry mixture.", "Cover and chill."]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 1,746 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                           | sentence_1                                                                           | label                                                          |
  |:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                               | string                                                                               | float                                                          |
  | details | <ul><li>min: 63 tokens</li><li>mean: 119.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 63 tokens</li><li>mean: 118.49 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.19</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | label            |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>Strawberry Whatever ["1 lb. frozen strawberries in juice", "1 small can crushed pineapple", "3 ripe bananas", "1 c. chopped pecans", "1 large pkg. strawberry Jell-O", "1 1/2 c. boiling water", "1 pt. sour cream"] ["Mix Jell-O in boiling water.", "Add strawberries, pineapple, crushed bananas and nuts.", "Spread 1/2 mixture in 13 x 6 1/2-inch pan.", "Allow to gel in freezer 30 minutes.", "Add layer of sour cream, then remaining mixture on top.", "Gel and serve."]</code> | <code>One Hour Rolls ["1 c. milk", "2 Tbsp. sugar", "1 pkg. dry yeast", "1 Tbsp. salt", "3 Tbsp. Crisco oil", "2 c. plain flour"] ["Put flour into a large mixing bowl.", "Combine sugar, milk, salt and oil in a saucepan and heat to boiling; remove from heat and let cool to lukewarm.", "Add yeast and mix well.", "Pour into flour and stir.", "Batter will be sticky.", "Roll out batter on a floured board and cut with biscuit cutter.", "Lightly brush tops with melted oleo and fold over.", "Place rolls on a cookie sheet, put in a warm place and let rise for 1 hour.", "Bake at 350\u00b0 for about 20 minutes. Yield: 2 1/2 dozen."]</code> | <code>0.1</code> |
  | <code>Broccoli Dip For Crackers ["16 oz. sour cream", "1 pkg. dry vegetable soup mix", "10 oz. pkg. frozen chopped broccoli, thawed and drained", "4 to 6 oz. Cheddar cheese, grated"] ["Mix together sour cream, soup mix, broccoli and half of cheese.", "Sprinkle remaining cheese on top.", "Bake at 350\u00b0 for 30 minutes, uncovered.", "Serve hot with vegetable crackers."]</code>                                                                                                   | <code>Vegetable-Burger Soup ["1/2 lb. ground beef", "2 c. water", "1 tsp. sugar", "1 pkg. Cup-a-Soup onion soup mix (dry)", "1 lb. can stewed tomatoes", "1 (8 oz.) can tomato sauce", "1 (10 oz.) pkg. frozen mixed vegetables"] ["Lightly brown beef in soup pot.", "Drain off excess fat.", "Stir in tomatoes, tomato sauce, water, frozen vegetables, soup mix and sugar.", "Bring to a boil.", "Reduce heat and simmer for 20 minutes. Serve."]</code>                                                                                                                                                                                                  | <code>0.4</code> |
  | <code>Summer Spaghetti ["1 lb. very thin spaghetti", "1/2 bottle McCormick Salad Supreme (seasoning)", "1 bottle Zesty Italian dressing"] ["Prepare spaghetti per package.", "Drain.", "Melt a little butter through it.", "Marinate overnight in Salad Supreme and Zesty Italian dressing.", "Just before serving, add cucumbers, tomatoes, green peppers, mushrooms, olives or whatever your taste may want."]</code>                                                                        | <code>Chicken Funny ["1 large whole chicken", "2 (10 1/2 oz.) cans chicken gravy", "1 (10 1/2 oz.) can cream of mushroom soup", "1 (6 oz.) box Stove Top stuffing", "4 oz. shredded cheese"] ["Boil and debone chicken.", "Put bite size pieces in average size square casserole dish.", "Pour gravy and cream of mushroom soup over chicken; level.", "Make stuffing according to instructions on box (do not make too moist).", "Put stuffing on top of chicken and gravy; level.", "Sprinkle shredded cheese on top and bake at 350\u00b0 for approximately 20 minutes or until golden and bubbly."]</code>                                               | <code>0.3</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 50
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 50
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch   | Step | Training Loss |
|:-------:|:----:|:-------------:|
| 4.5455  | 500  | 0.0594        |
| 9.0909  | 1000 | 0.0099        |
| 13.6364 | 1500 | 0.0085        |
| 18.1818 | 2000 | 0.0077        |
| 22.7273 | 2500 | 0.0074        |
| 27.2727 | 3000 | 0.0071        |
| 31.8182 | 3500 | 0.0068        |
| 36.3636 | 4000 | 0.0066        |
| 40.9091 | 4500 | 0.0063        |
| 45.4545 | 5000 | 0.006         |
| 50.0    | 5500 | 0.0057        |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->