File size: 27,156 Bytes
df43f9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1746
- loss:CosineSimilarityLoss
base_model: sentence-transformers/distilbert-base-nli-mean-tokens
datasets: []
widget:
- source_sentence: Scalloped Corn ["1 can cream-style corn", "1 can whole kernel corn",
"1/2 pkg. (approximately 20) saltine crackers, crushed", "1 egg, beaten", "6 tsp.
butter, divided", "pepper to taste"] ["Mix together both cans of corn, crackers,
egg, 2 teaspoons of melted butter and pepper and place in a buttered baking dish.",
"Dot with remaining 4 teaspoons of butter.", "Bake at 350\u00b0 for 1 hour."]
sentences:
- Artichoke Dip ["2 cans or jars artichoke hearts", "1 c. mayonnaise", "1 c. Parmesan
cheese"] ["Drain artichokes and chop.", "Mix with mayonnaise and Parmesan cheese.",
"After well mixed, bake, uncovered, for 20 to 30 minutes at 350\u00b0.", "Serve
with crackers."]
- Scalloped Corn ["1 can cream-style corn", "1 can whole kernel corn", "1/2 pkg.
(approximately 20) saltine crackers, crushed", "1 egg, beaten", "6 tsp. butter,
divided", "pepper to taste"] ["Mix together both cans of corn, crackers, egg,
2 teaspoons of melted butter and pepper and place in a buttered baking dish.",
"Dot with remaining 4 teaspoons of butter.", "Bake at 350\u00b0 for 1 hour."]
- Chicken Stew ["3 lb. chicken, boiled", "4 medium potatoes, diced", "2 medium onions,
chopped", "1 (16 oz.) can creamed corn", "1 (16 oz.) can English peas", "1 (16
oz.) can field peas", "1 (16 oz.) can butter beans", "1 (16 oz.) can tomatoes",
"1 (46 oz.) can tomato juice", "1 small box macaroni", "1 Tbsp. black pepper",
"1 Tbsp. salt", "1 Tbsp. sugar"] ["Remove chicken from bone.", "Use the broth.",
"Mix the vegetables and macaroni.", "Add sugar, salt and black pepper.", "Cook
until all vegetables are tender over medium heat."]
- source_sentence: Watermelon Rind Pickles ["7 lb. watermelon rind", "7 c. sugar",
"2 c. apple vinegar", "1/2 tsp. oil of cloves", "1/2 tsp. oil of cinnamon"] ["Trim
off green and pink parts of watermelon rind; cut to 1-inch cubes.", "Parboil until
tender, but not soft.", "Drain. Combine sugar, vinegar, oil of cloves and oil
of cinnamon; bring to boiling and pour over rind.", "Let stand overnight.", "In
the morning, drain off syrup.", "Heat and put over rind.", "The third morning,
heat rind and syrup; seal in hot, sterilized jars.", "Makes 8 pints.", "(Oil of
cinnamon and clove keeps rind clear and transparent.)"]
sentences:
- Cheeseburger Potato Soup ["6 baking potatoes", "1 lb. of extra lean ground beef",
"2/3 c. butter or margarine", "6 c. milk", "3/4 tsp. salt", "1/2 tsp. pepper",
"1 1/2 c (6 oz.) shredded Cheddar cheese, divided", "12 sliced bacon, cooked,
crumbled and divided", "4 green onion, chopped and divided", "1 (8 oz.) carton
sour cream (optional)"] ["Wash potatoes; prick several times with a fork.", "Microwave
them with a wet paper towel covering the potatoes on high for 6-8 minutes.", "The
potatoes should be soft, ready to eat.", "Let them cool enough to handle.", "Cut
in half lengthwise; scoop out pulp and reserve.", "Discard shells.", "Brown ground
beef until done.", "Drain any grease from the meat.", "Set aside when done.",
"Meat will be added later.", "Melt butter in a large kettle over low heat; add
flour, stirring until smooth.", "Cook 1 minute, stirring constantly. Gradually
add milk; cook over medium heat, stirring constantly, until thickened and bubbly.",
"Stir in potato, ground beef, salt, pepper, 1 cup of cheese, 2 tablespoons of
green onion and 1/2 cup of bacon.", "Cook until heated (do not boil).", "Stir
in sour cream if desired; cook until heated (do not boil).", "Sprinkle with remaining
cheese, bacon and green onions."]
- Easy Fudge ["1 (14 oz.) can sweetened condensed milk", "1 (12 oz.) pkg. semi-sweet
chocolate chips", "1 (1 oz.) sq. unsweetened chocolate (if desired)", "1 1/2 c.
chopped nuts (if desired)", "1 tsp. vanilla"] ["Butter a square pan, 8 x 8 x 2-inches.",
"Heat milk, chocolate chips and unsweetened chocolate over low heat, stirring
constantly, until chocolate is melted and mixture is smooth. Remove from heat.",
"Stir in nuts and vanilla.", "Spread in pan."]
- Chicken Ole ["4 chicken breasts, cooked", "1 can cream of chicken soup", "1 can
cream of mushroom soup", "1 can green chili salsa sauce", "1 can green chilies",
"1 c. milk", "1 grated onion", "1 pkg. corn tortilla in pieces"] ["Dice chicken.",
"Mix all ingredients together.", "Let sit overnight.", "Bake 1 1/2 hours at 375\u00b0."]
- source_sentence: Quick Barbecue Wings ["chicken wings (as many as you need for dinner)",
"flour", "barbecue sauce (your choice)"] ["Clean wings.", "Flour and fry until
done.", "Place fried chicken wings in microwave bowl.", "Stir in barbecue sauce.",
"Microwave on High (stir once) for 4 minutes."]
sentences:
- Creamy Corn ["2 (16 oz.) pkg. frozen corn", "1 (8 oz.) pkg. cream cheese, cubed",
"1/3 c. butter, cubed", "1/2 tsp. garlic powder", "1/2 tsp. salt", "1/4 tsp. pepper"]
["In a slow cooker, combine all ingredients. Cover and cook on low for 4 hours
or until heated through and cheese is melted. Stir well before serving. Yields
6 servings."]
- Broccoli Salad ["1 large head broccoli (about 1 1/2 lb.)", "10 slices bacon, cooked
and crumbled", "5 green onions, sliced or 1/4 c. chopped red onion", "1/2 c. raisins",
"1 c. mayonnaise", "2 Tbsp. vinegar", "1/4 c. sugar"] ["Trim off large leaves
of broccoli and remove the tough ends of lower stalks. Wash the broccoli thoroughly.
Cut the florets and stems into bite-size pieces. Place in a large bowl. Add bacon,
onions and raisins. Combine remaining ingredients, stirring well. Add dressing
to broccoli mixture and toss gently. Cover and refrigerate 2 to 3 hours. Makes
about 6 servings."]
- Vegetable-Burger Soup ["1/2 lb. ground beef", "2 c. water", "1 tsp. sugar", "1
pkg. Cup-a-Soup onion soup mix (dry)", "1 lb. can stewed tomatoes", "1 (8 oz.)
can tomato sauce", "1 (10 oz.) pkg. frozen mixed vegetables"] ["Lightly brown
beef in soup pot.", "Drain off excess fat.", "Stir in tomatoes, tomato sauce,
water, frozen vegetables, soup mix and sugar.", "Bring to a boil.", "Reduce heat
and simmer for 20 minutes. Serve."]
- source_sentence: 'Eggless Milkless Applesauce Cake ["3/4 c. sugar", "1/2 c. shortening",
"1 1/2 c. applesauce", "3 level tsp. soda", "1 tsp. each: cinnamon, cloves and
nutmeg", "2 c. sifted flour", "1 c. raisins", "1 c. nuts"] ["Mix Crisco with applesauce,
nuts and raisins.", "Sift dry ingredients and add.", "Mix well.", "Put in a greased
and floured loaf pan or tube pan.", "Bake in loaf pan at 350\u00b0 to 375\u00b0
for 45 to 60 minutes, layer pan at 375\u00b0 for 20 minutes or tube pan at 325\u00b0
for 1 hour."]'
sentences:
- Broccoli Dip For Crackers ["16 oz. sour cream", "1 pkg. dry vegetable soup mix",
"10 oz. pkg. frozen chopped broccoli, thawed and drained", "4 to 6 oz. Cheddar
cheese, grated"] ["Mix together sour cream, soup mix, broccoli and half of cheese.",
"Sprinkle remaining cheese on top.", "Bake at 350\u00b0 for 30 minutes, uncovered.",
"Serve hot with vegetable crackers."]
- Potato And Cheese Pie ["3 eggs", "1 tsp. salt", "1/4 tsp. pepper", "2 c. half
and half", "3 c. potatoes, shredded coarse", "1 c. Cheddar cheese, coarsely shredded",
"1/3 c. green onions"] ["Beat eggs, salt and pepper until well blended.", "Stir
in half and half, potatoes and onions.", "Pour into well-greased 8-inch baking
dish.", "Bake in a 400\u00b0 oven for 35 to 40 minutes, or until knife inserted
in center comes out clean and potatoes are tender. Cool on rack 5 minutes; cut
into squares.", "Makes 4 large servings."]
- Angel Biscuits ["5 c. flour", "3 Tbsp. sugar", "4 tsp. baking powder", "1 1/2
pkg. dry yeast", "2 c. buttermilk", "1 tsp. soda", "1 1/2 sticks margarine", "1/2
c. warm water"] ["Mix flour, sugar, baking powder, soda and salt together.", "Cut
in margarine, dissolve yeast in warm water.", "Stir into buttermilk and add to
dry mixture.", "Cover and chill."]
- source_sentence: Rhubarb Coffee Cake ["1 1/2 c. sugar", "1/2 c. butter", "1 egg",
"1 c. buttermilk", "2 c. flour", "1/2 tsp. salt", "1 tsp. soda", "1 c. buttermilk",
"2 c. rhubarb, finely cut", "1 tsp. vanilla"] ["Cream sugar and butter.", "Add
egg and beat well.", "To creamed butter, sugar and egg, add alternately buttermilk
with mixture of flour, salt and soda.", "Mix well.", "Add rhubarb and vanilla.",
"Pour into greased 9 x 13-inch pan and add Topping."]
sentences:
- Prize-Winning Meat Loaf ["1 1/2 lb. ground beef", "1 c. tomato juice", "3/4 c.
oats (uncooked)", "1 egg, beaten", "1/4 c. chopped onion", "1/4 tsp. pepper",
"1 1/2 tsp. salt"] ["Mix well.", "Press firmly into an 8 1/2 x 4 1/2 x 2 1/2-inch
loaf pan.", "Bake in preheated moderate oven.", "Bake at 350\u00b0 for 1 hour.",
"Let stand 5 minutes before slicing.", "Makes 8 servings."]
- Angel Biscuits ["5 c. flour", "3 Tbsp. sugar", "4 tsp. baking powder", "1 1/2
pkg. dry yeast", "2 c. buttermilk", "1 tsp. soda", "1 1/2 sticks margarine", "1/2
c. warm water"] ["Mix flour, sugar, baking powder, soda and salt together.", "Cut
in margarine, dissolve yeast in warm water.", "Stir into buttermilk and add to
dry mixture.", "Cover and chill."]
- 'Smothered Round Steak(Servings: 4) ["2 lb. round steak", "1/2 tsp. ground black
pepper", "1 tsp. ground white pepper", "1/2 c. vegetable oil", "2 bell peppers,
chopped", "1 c. beef stock or water", "2 tsp. salt", "1 tsp. ground red pepper",
"all-purpose flour (dredging)", "3 medium onions, chopped", "1 celery rib, chopped"]
["Alex Patout says, \"Smothering is a multipurpose Cajun technique that works
wonders with everything from game to snap beans.", "It''s similar to what the
rest of the world knows as braising.", "The ingredients are briefly browned or
sauteed, then cooked with a little liquid over a low heat for a long time.\""]'
pipeline_tag: sentence-similarity
---
# SentenceTransformer based on sentence-transformers/distilbert-base-nli-mean-tokens
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/distilbert-base-nli-mean-tokens](https://huggingface.co/sentence-transformers/distilbert-base-nli-mean-tokens). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/distilbert-base-nli-mean-tokens](https://huggingface.co/sentence-transformers/distilbert-base-nli-mean-tokens) <!-- at revision 2781c006adbf3726b509caa8649fc8077ff0724d -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("DivyaMereddy007/RecipeBert_v5original_epoc50_Copy_of_TrainSetenceTransforme-Finetuning_v5_DistilledBert")
# Run inference
sentences = [
'Rhubarb Coffee Cake ["1 1/2 c. sugar", "1/2 c. butter", "1 egg", "1 c. buttermilk", "2 c. flour", "1/2 tsp. salt", "1 tsp. soda", "1 c. buttermilk", "2 c. rhubarb, finely cut", "1 tsp. vanilla"] ["Cream sugar and butter.", "Add egg and beat well.", "To creamed butter, sugar and egg, add alternately buttermilk with mixture of flour, salt and soda.", "Mix well.", "Add rhubarb and vanilla.", "Pour into greased 9 x 13-inch pan and add Topping."]',
'Prize-Winning Meat Loaf ["1 1/2 lb. ground beef", "1 c. tomato juice", "3/4 c. oats (uncooked)", "1 egg, beaten", "1/4 c. chopped onion", "1/4 tsp. pepper", "1 1/2 tsp. salt"] ["Mix well.", "Press firmly into an 8 1/2 x 4 1/2 x 2 1/2-inch loaf pan.", "Bake in preheated moderate oven.", "Bake at 350\\u00b0 for 1 hour.", "Let stand 5 minutes before slicing.", "Makes 8 servings."]',
'Angel Biscuits ["5 c. flour", "3 Tbsp. sugar", "4 tsp. baking powder", "1 1/2 pkg. dry yeast", "2 c. buttermilk", "1 tsp. soda", "1 1/2 sticks margarine", "1/2 c. warm water"] ["Mix flour, sugar, baking powder, soda and salt together.", "Cut in margarine, dissolve yeast in warm water.", "Stir into buttermilk and add to dry mixture.", "Cover and chill."]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,746 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 63 tokens</li><li>mean: 119.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 63 tokens</li><li>mean: 118.49 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.19</li><li>max: 1.0</li></ul> |
* Samples:
| sentence_0 | sentence_1 | label |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>Strawberry Whatever ["1 lb. frozen strawberries in juice", "1 small can crushed pineapple", "3 ripe bananas", "1 c. chopped pecans", "1 large pkg. strawberry Jell-O", "1 1/2 c. boiling water", "1 pt. sour cream"] ["Mix Jell-O in boiling water.", "Add strawberries, pineapple, crushed bananas and nuts.", "Spread 1/2 mixture in 13 x 6 1/2-inch pan.", "Allow to gel in freezer 30 minutes.", "Add layer of sour cream, then remaining mixture on top.", "Gel and serve."]</code> | <code>One Hour Rolls ["1 c. milk", "2 Tbsp. sugar", "1 pkg. dry yeast", "1 Tbsp. salt", "3 Tbsp. Crisco oil", "2 c. plain flour"] ["Put flour into a large mixing bowl.", "Combine sugar, milk, salt and oil in a saucepan and heat to boiling; remove from heat and let cool to lukewarm.", "Add yeast and mix well.", "Pour into flour and stir.", "Batter will be sticky.", "Roll out batter on a floured board and cut with biscuit cutter.", "Lightly brush tops with melted oleo and fold over.", "Place rolls on a cookie sheet, put in a warm place and let rise for 1 hour.", "Bake at 350\u00b0 for about 20 minutes. Yield: 2 1/2 dozen."]</code> | <code>0.1</code> |
| <code>Broccoli Dip For Crackers ["16 oz. sour cream", "1 pkg. dry vegetable soup mix", "10 oz. pkg. frozen chopped broccoli, thawed and drained", "4 to 6 oz. Cheddar cheese, grated"] ["Mix together sour cream, soup mix, broccoli and half of cheese.", "Sprinkle remaining cheese on top.", "Bake at 350\u00b0 for 30 minutes, uncovered.", "Serve hot with vegetable crackers."]</code> | <code>Vegetable-Burger Soup ["1/2 lb. ground beef", "2 c. water", "1 tsp. sugar", "1 pkg. Cup-a-Soup onion soup mix (dry)", "1 lb. can stewed tomatoes", "1 (8 oz.) can tomato sauce", "1 (10 oz.) pkg. frozen mixed vegetables"] ["Lightly brown beef in soup pot.", "Drain off excess fat.", "Stir in tomatoes, tomato sauce, water, frozen vegetables, soup mix and sugar.", "Bring to a boil.", "Reduce heat and simmer for 20 minutes. Serve."]</code> | <code>0.4</code> |
| <code>Summer Spaghetti ["1 lb. very thin spaghetti", "1/2 bottle McCormick Salad Supreme (seasoning)", "1 bottle Zesty Italian dressing"] ["Prepare spaghetti per package.", "Drain.", "Melt a little butter through it.", "Marinate overnight in Salad Supreme and Zesty Italian dressing.", "Just before serving, add cucumbers, tomatoes, green peppers, mushrooms, olives or whatever your taste may want."]</code> | <code>Chicken Funny ["1 large whole chicken", "2 (10 1/2 oz.) cans chicken gravy", "1 (10 1/2 oz.) can cream of mushroom soup", "1 (6 oz.) box Stove Top stuffing", "4 oz. shredded cheese"] ["Boil and debone chicken.", "Put bite size pieces in average size square casserole dish.", "Pour gravy and cream of mushroom soup over chicken; level.", "Make stuffing according to instructions on box (do not make too moist).", "Put stuffing on top of chicken and gravy; level.", "Sprinkle shredded cheese on top and bake at 350\u00b0 for approximately 20 minutes or until golden and bubbly."]</code> | <code>0.3</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 50
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 50
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:-------:|:----:|:-------------:|
| 4.5455 | 500 | 0.0594 |
| 9.0909 | 1000 | 0.0099 |
| 13.6364 | 1500 | 0.0085 |
| 18.1818 | 2000 | 0.0077 |
| 22.7273 | 2500 | 0.0074 |
| 27.2727 | 3000 | 0.0071 |
| 31.8182 | 3500 | 0.0068 |
| 36.3636 | 4000 | 0.0066 |
| 40.9091 | 4500 | 0.0063 |
| 45.4545 | 5000 | 0.006 |
| 50.0 | 5500 | 0.0057 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |