File size: 11,980 Bytes
923499f 44ff3d3 264905e 44ff3d3 f1dd006 923499f 264905e 1a9dab2 264905e deb4641 264905e cd47cca f99f763 97fb4ba f99f763 cfad286 964124e 4774f98 964124e cfad286 964124e 4774f98 964124e f99f763 ce21df3 9d5353a ce21df3 05566dd ce21df3 44fb784 ce21df3 4774f98 ce21df3 05566dd 9a6f7f7 ce21df3 083e006 ce21df3 f99f763 cd47cca 7bb6fbf cd47cca 96b0161 06e9a10 cd47cca de04131 06e9a10 de04131 06e9a10 99eb79b 06e9a10 99eb79b 06e9a10 de04131 d649506 06e9a10 de04131 06e9a10 cd47cca 05566dd 44fb784 cd47cca 99eb79b de04131 cd47cca de04131 cd47cca de04131 cd47cca 9a6f7f7 05566dd 4774f98 cd47cca 721f70c 5cafa9f 721f70c 89d8d09 721f70c 5cafa9f 721f70c 89d8d09 721f70c 264905e f598b29 264905e b9c463c 264905e 44ff3d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
---
pipeline_tag: text-to-image
license: other
license_name: faipl-1.0-sd
license_link: LICENSE
datasets: Disty0/sotediffusion-text_only
base_model: Disty0/sotediffusion-wuerstchen3
tags:
- text-to-image
- anime
language: en
library_name: diffusers
prior:
- Disty0/sotediffusion-v2-prior
---
# SoteDiffusion V2
An Anime finetune of Würstchen V3 / Stable Cascade.
# Release Notes
- This release is sponsored by <a href="https://fal.ai/grants?rel=sote-diffusion" target="_blank">fal.ai/grants</a>
- Trained on 12M text & image paris including WD tags and natural language captions for a single epoch on 8xH100 80GB SXM5 GPUs.
- Trained with Full FP32 and MAE Loss.
<style>
.image {
float: left;
margin-left: 10px;
}
</style>
<table>
<img class="image" src="https://cdn-uploads.huggingface.co/production/uploads/6456af6195082f722d178522/KJTHqR3otoKoiXxvbudp8.png" width="320">
<img class="image" src="https://cdn-uploads.huggingface.co/production/uploads/6456af6195082f722d178522/uua4L9aaqJ0LI8gYv4xmC.png" width="320">
</table>
# ComfyUI
Use these arguments when starting ComfyUI: `--fp16-vae --fp16-unet`
Download the Stage C to unet folder: https://huggingface.co/Disty0/sotediffusion-v2/resolve/main/sotediffusion-v2-stage_c.safetensors
Download the Stage C Text Encoder to clip folder: https://huggingface.co/Disty0/sotediffusion-v2/resolve/main/sotediffusion-v2-stage_c_text_encoder.safetensors
Download the Stage B to unet folder: https://huggingface.co/Disty0/sotediffusion-v2/resolve/main/sotediffusion-v2-stage_b.safetensors
Download the Stage A to vae folder: https://huggingface.co/Disty0/sotediffusion-v2/resolve/main/stage_a_ft_hq.safetensors
Download the workflow and load it: https://huggingface.co/Disty0/sotediffusion-v2/resolve/main/comfyui_workflow.json?download=true
Stage C sampler: DPMPP 2M or DPMPP 2M SDE with SGM Uniform scheduler
Stage C steps: 28
Stage C CFG: 6.0
Stage B sampler: LCM with Exponential scheduler
Stage B steps: 14
Stage B CFG: 1.0
## SD.Next
URL: https://github.com/vladmandic/automatic/
Switch to dev branch: `git checkout dev`
Go to Models -> Huggingface and type `Disty0/sotediffusion-v2` into the model name and press download.
Load `Disty0/sotediffusion-v2` after the download process is complete.
Prompt:
```
your prompt goes here
very aesthetic, best quality, newest,
```
(New lines act the same way as BREAK in SD.Next)
Negative Prompt:
```
very displeasing, displeasing, worst quality, bad quality, low quality, realistic, monochrome, comic, sketch, oldest, early, artist name, signature, blurry, simple background, upside down, interlocked fingers,
```
Parameters:
Sampler: Default
Steps: 28
Refiner Steps: 14
CFG: 6.0
Secondary CFG: 1.0 to 1.5
Resolution: 1280x1280, 1024x1536, 1024x2048, 2048x1152
Anything works as long as it's a multiply of 128.
# Diffusers
```shell
pip install git+https://github.com/huggingface/diffusers
```
```python
import torch
import diffusers
device = "cuda"
dtype = torch.float16
model_path = "Disty0/sotediffusion-v2"
pipe = diffusers.AutoPipelineForText2Image.from_pretrained(model_path, text_encoder=None, torch_dtype=dtype)
# de-dupe
pipe.decoder_pipe.text_encoder = pipe.text_encoder = None # nothing uses this
del pipe.decoder_pipe.text_encoder
del pipe.prior_prior
del pipe.prior_text_encoder
del pipe.prior_tokenizer
del pipe.prior_scheduler
del pipe.prior_feature_extractor
del pipe.prior_image_encoder
pipe = pipe.to(device, dtype=dtype)
pipe.prior_pipe = pipe.prior_pipe.to(device, dtype=dtype)
def encode_prompt(
prior_pipe,
device,
num_images_per_prompt,
prompt=""
):
if prompt == "":
text_inputs = prior_pipe.tokenizer(
prompt,
padding="max_length",
max_length=77,
truncation=False,
return_tensors="pt",
)
input_ids = text_inputs.input_ids
attention_mask=None
else:
text_inputs = prior_pipe.tokenizer(
prompt,
padding="longest",
truncation=False,
return_tensors="pt",
)
chunk = []
padding = []
max_len = 75
start_token = text_inputs.input_ids[:,0].unsqueeze(0)
end_token = text_inputs.input_ids[:,-1].unsqueeze(0)
raw_input_ids = text_inputs.input_ids[:,1:-1]
prompt_len = len(raw_input_ids[0])
last_lenght = prompt_len % max_len
for i in range(int((prompt_len - last_lenght) / max_len)):
chunk.append(torch.cat([start_token, raw_input_ids[:,i*max_len:(i+1)*max_len], end_token], dim=1))
for i in range(max_len - last_lenght):
padding.append(text_inputs.input_ids[:,-1])
last_chunk = torch.cat([raw_input_ids[:,prompt_len-last_lenght:], torch.tensor([padding])], dim=1)
chunk.append(torch.cat([start_token, last_chunk, end_token], dim=1))
input_ids = torch.cat(chunk, dim=0)
attention_mask = torch.ones(input_ids.shape, device=device, dtype=torch.int64)
attention_mask[-1,last_lenght+1:] = 0
text_encoder_output = prior_pipe.text_encoder(
input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
)
prompt_embeds = text_encoder_output.hidden_states[-1].reshape(1,-1,1280)
prompt_embeds = prompt_embeds.to(dtype=prior_pipe.text_encoder.dtype, device=device)
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
prompt_embeds_pooled = text_encoder_output.text_embeds[0].unsqueeze(0).unsqueeze(1)
prompt_embeds_pooled = prompt_embeds_pooled.to(dtype=prior_pipe.text_encoder.dtype, device=device)
prompt_embeds_pooled = prompt_embeds_pooled.repeat_interleave(num_images_per_prompt, dim=0)
return prompt_embeds, prompt_embeds_pooled
prompt = "1girl, solo, looking at viewer, open mouth, blue eyes, medium breasts, blonde hair, gloves, dress, bow, hair between eyes, bare shoulders, upper body, hair bow, indoors, elbow gloves, hand on own chest, bridal gauntlets, candlestand, smile, rim lighting, from side, castle interior, looking side,"
quality_prompt = "very aesthetic, best quality, newest"
negative_prompt = "very displeasing, displeasing, worst quality, bad quality, low quality, realistic, monochrome, comic, sketch, oldest, early, artist name, signature, blurry, simple background, upside down, interlocked fingers,"
num_images_per_prompt=1
# Encode prompts and quality prompts eperately, long prompt support and don't use attention masks for empty prompts:
# pipe, device, num_images_per_prompt, prompt
empty_prompt_embeds, _ = encode_prompt(pipe.prior_pipe, device, num_images_per_prompt, prompt="")
prompt_embeds, prompt_embeds_pooled = encode_prompt(pipe.prior_pipe, device, num_images_per_prompt, prompt=prompt)
quality_prompt_embeds, _ = encode_prompt(pipe.prior_pipe, device, num_images_per_prompt, prompt=quality_prompt)
prompt_embeds = torch.cat([prompt_embeds, quality_prompt_embeds], dim=1)
negative_prompt_embeds, negative_prompt_embeds_pooled = encode_prompt(pipe.prior_pipe, device, num_images_per_prompt, prompt=negative_prompt)
while prompt_embeds.shape[1] < negative_prompt_embeds.shape[1]:
prompt_embeds = torch.cat([prompt_embeds, empty_prompt_embeds], dim=1)
while negative_prompt_embeds.shape[1] < prompt_embeds.shape[1]:
negative_prompt_embeds = torch.cat([negative_prompt_embeds, empty_prompt_embeds], dim=1)
output = pipe(
width=1024,
height=1536,
decoder_guidance_scale=1.0,
prior_guidance_scale=6.0,
prior_num_inference_steps=28,
num_inference_steps=14,
output_type="pil",
prompt=prompt + " " + quality_prompt,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
prompt_embeds_pooled=prompt_embeds_pooled,
negative_prompt_embeds=negative_prompt_embeds,
negative_prompt_embeds_pooled=negative_prompt_embeds_pooled,
num_images_per_prompt=num_images_per_prompt,
).images[0]
display(output)
```
## Training:
### Stage C
**Base model**: Disty0/sotediffusion-wuerstchen3
**GPU used**: 7x Nvidia H100 80GB SXM5
| parameter | value |
|---|---|
| **amp** | no |
| **weights** | fp32 |
| **save weights** | fp32 |
| **resolution** | 1024x1024 |
| **effective batch size** | 84 |
| **unet learning rate** | 2e-6 |
| **te learning rate** | 1e-7 |
| **optimizer** | AdamW 8bit |
| **images** | 6M * 2 captions per image |
| **epochs** | 1 |
### Stage B
**Base model**: Disty0/sotediffusion-wuerstchen3-decoder
**GPU used**: 1x Nvidia H100 80GB SXM5
| parameter | value |
|---|---|
| **amp** | no |
| **weights** | fp32 |
| **save weights** | fp32 |
| **resolution** | 1024x1024 |
| **effective batch size** | 8 |
| **unet learning rate** | 8e-6 |
| **te learning rate** | none |
| **optimizer** | AdamW |
| **images** | 120K |
| **epochs** | 6 |
## WD Tags:
Model is trained with this tag order:
```
aesthetic tags, quality tags, date tags, custom tags, rating tags, character, series, rest of the tags
```
### Date:
| tag | date |
|---|---|
| **newest** | 2022 to 2024 |
| **recent** | 2019 to 2021 |
| **mid** | 2015 to 2018 |
| **early** | 2011 to 2014 |
| **oldest** | 2005 to 2010 |
### Aesthetic Tags:
**Model used**: shadowlilac/aesthetic-shadow-v2
| score greater than | tag | count |
|---|---|---|
| **0.90** | extremely aesthetic | 125.451 |
| **0.80** | very aesthetic | 887.382 |
| **0.70** | aesthetic | 1.049.857 |
| **0.50** | slightly aesthetic | 1.643.091 |
| **0.40** | not displeasing | 569.543 |
| **0.30** | not aesthetic | 445.188 |
| **0.20** | slightly displeasing | 341.424 |
| **0.10** | displeasing | 237.660 |
| **rest of them** | very displeasing | 328.712 |
### Quality Tags:
**Model used**: https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/models/aes-B32-v0.pth
| score greater than | tag | count |
|---|---|---|
| **0.980** | best quality | 1.270.447 |
| **0.900** | high quality | 498.244 |
| **0.750** | great quality | 351.006 |
| **0.500** | medium quality | 366.448 |
| **0.250** | normal quality | 368.380 |
| **0.125** | bad quality | 279.050 |
| **0.025** | low quality | 538.958 |
| **rest of them** | worst quality | 1.955.966 |
## Rating Tags:
| tag | count |
|---|---|
| **general** | 1.416.451 |
| **sensitive** | 3.447.664 |
| **nsfw** | 427.459 |
| **explicit nsfw** | 336.925 |
## Custom Tags:
| dataset name | custom tag |
|---|---|
| **image boards** | date, |
| **text** | The text says "text", |
| **characters** | character, series
| **pixiv** | art by Display_Name, |
| **visual novel cg** | Full_VN_Name (short_3_letter_name), visual novel cg, |
| **anime wallpaper** | date, anime wallpaper, |
## Limitations and Bias
### Bias
- This model is intended for anime illustrations.
Realistic capabilites are not tested at all.
### Limitations
- Can fall back to realistic.
Add "realistic" tag to the negatives when this happens.
- Far shot eyes and hands can be bad.
- Still has a lot more room for more training.
## License
SoteDiffusion models falls under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) license, which is compatible with Stable Diffusion models’ license. Key points:
1. **Modification Sharing:** If you modify SoteDiffusion models, you must share both your changes and the original license.
2. **Source Code Accessibility:** If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.
3. **Distribution Terms:** Any distribution must be under this license or another with similar rules.
4. **Compliance:** Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.
**Notes**: Anything not covered by Fair AI license is inherited from Stability AI Non-Commercial license which is named as LICENSE_INHERIT. |