File size: 18,738 Bytes
cd8454d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
# Copyright (C) 2025. Huawei Technologies Co., Ltd. All Rights Reserved. (authors: Yusen Sun,
# Xiao Chen)
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ast
import fileinput
import logging
import os
import sys
import time
import argparse
from collections import namedtuple
from tqdm import tqdm
from pathlib import Path
import numpy as np
import torch
from fairseq import checkpoint_utils, options, tasks, utils
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.token_generation_constraints import pack_constraints, unpack_constraints
from fairseq_cli.generate import get_symbols_to_strip_from_output
from fairseq.models import import_models
PHONE_SPLITTER = {"[SIL]", "[CM]", "[PD]", "[QN]", "[EX]"}
current_root = Path(__file__).absolute().parent
sys.path.append(str(current_root))
sys.path.append(str(current_root.parent / "thirdparty/G2P"))
from G2P_processors import MultilingualG2P
relative_path = Path(current_root.name)
namespace = str(relative_path / "models").replace("/" , ".")
import_models(str(current_root / "models"), namespace)
TOKENIZE_ON_NPU = os.environ.get("TOKENIZE_ON_NPU")
if TOKENIZE_ON_NPU is not None and TOKENIZE_ON_NPU == "1":
import torch_npu
from torch_npu.contrib import transfer_to_npu
logging.info("Applying Patches for NPU!!!")
console_format = logging.Formatter(
"[%(asctime)s][%(filename)s:%(levelname)s][%(process)d:%(threadName)s]%(message)s"
)
console_handler = logging.StreamHandler()
console_handler.setFormatter(console_format)
console_handler.setLevel(logging.INFO)
if len(logging.root.handlers) > 0:
for handler in logging.root.handlers:
logging.root.removeHandler(handler)
logging.root.addHandler(console_handler)
logging.root.setLevel(logging.INFO)
Batch = namedtuple("Batch", "ids src_tokens src_lengths constraints")
Translation = namedtuple("Translation", "src_str hypos pos_scores alignments")
DEFAULT_T2U_ARGS = [
str(current_root) + "/data_bin",
"--path",
str(current_root) + "/ckpt/40ms.checkpoint15.pt",
"--batch-size",
"1",
"--buffer-size",
"2",
"--beam",
"5",
"--max-len-b",
"1024",
# "--input",
# "./sample.txt",
"--source-lang",
"ph",
"--target-lang",
"tgt.unit",
]
def dummy_encode_fn(x):
return x
class Text2TokenGenerator:
def __init__(self, args=None) -> None:
self._initialize(args)
def _initialize(self, args):
t2u_args = DEFAULT_T2U_ARGS
if args is not None and len(args) > 0:
t2u_args = t2u_args + args
parser = options.get_interactive_generation_parser()
t2u_fairseq_args = options.parse_args_and_arch(
parser=parser, input_args=t2u_args
)
cfg: FairseqConfig = convert_namespace_to_omegaconf(t2u_fairseq_args)
utils.import_user_module(cfg.common)
if cfg.interactive.buffer_size < 1:
cfg.interactive.buffer_size = 1
if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
cfg.dataset.batch_size = 1
assert (
not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam
), "--sampling requires --nbest to be equal to --beam"
assert (
not cfg.dataset.batch_size
or cfg.dataset.batch_size <= cfg.interactive.buffer_size
), "--batch-size cannot be larger than --buffer-size"
self.cfg = cfg
logging.info(self.cfg)
# Fix seed for stochastic decoding
if (
self.cfg.common.seed is not None
and not self.cfg.generation.no_seed_provided
):
np.random.seed(self.cfg.common.seed)
utils.set_torch_seed(self.cfg.common.seed)
self.use_cuda = torch.cuda.is_available() and not self.cfg.common.cpu
# Setup task, e.g., translation
self.task = tasks.setup_task(self.cfg.task)
# Load ensemble
overrides = ast.literal_eval(self.cfg.common_eval.model_overrides)
logging.info("loading model(s) from {}".format(self.cfg.common_eval.path))
self.models, _model_args = checkpoint_utils.load_model_ensemble(
utils.split_paths(self.cfg.common_eval.path),
arg_overrides=overrides,
task=self.task,
suffix=self.cfg.checkpoint.checkpoint_suffix,
strict=(self.cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=self.cfg.checkpoint.checkpoint_shard_count,
)
# Set dictionaries
self.src_dict = self.task.source_dictionary
self.tgt_dict = self.task.target_dictionary
# Optimize ensemble for generation
for model in self.models:
if model is None:
continue
if self.cfg.common.fp16:
model.half()
if (
self.use_cuda
and not self.cfg.distributed_training.pipeline_model_parallel
):
model.cuda()
model.prepare_for_inference_(cfg)
# Initialize generator
self.generator = self.task.build_generator(self.models, self.cfg.generation)
# Handle tokenization and BPE
self.tokenizer = self.task.build_tokenizer(cfg.tokenizer)
self.bpe = self.task.build_bpe(cfg.bpe)
self.align_dict = None
self.max_positions = utils.resolve_max_positions(
self.task.max_positions(), *[model.max_positions() for model in self.models]
)
# init G2P
self.language = "zh" # zh means the model treats all non-English as Chinese, en means the model treats all langauge as English.
self.mG2P = MultilingualG2P(
"wenet", remove_interjections=False, remove_erhua=False
) # 'baidu' or 'wenet'
def text2phone(self, text):
phones, norm_text = self.mG2P.text_normalization_and_g2p(
text, self.language, with_lang_prefix=True, normalize_punct=True
)
return " ".join(phones)
def buffered_read(self, input, buffer_size):
buffer = []
with fileinput.input(
files=[input], openhook=fileinput.hook_encoded("utf-8")
) as h:
for src_str in h:
phones = self.text2phone(src_str.strip())
buffer.append(phones)
if len(buffer) >= buffer_size:
yield buffer
buffer = []
if len(buffer) > 0:
yield buffer
def make_batches(self, lines, encode_fn):
def encode_fn_target(x):
return encode_fn(x)
if self.cfg.generation.constraints:
# Strip (tab-delimited) contraints, if present, from input lines,
# store them in batch_constraints
batch_constraints = [list() for _ in lines]
for i, line in enumerate(lines):
if "\t" in line:
lines[i], *batch_constraints[i] = line.split("\t")
# Convert each List[str] to List[Tensor]
for i, constraint_list in enumerate(batch_constraints):
batch_constraints[i] = [
self.task.target_dictionary.encode_line(
encode_fn_target(constraint),
append_eos=False,
add_if_not_exist=False,
)
for constraint in constraint_list
]
if self.cfg.generation.constraints:
constraints_tensor = pack_constraints(batch_constraints)
else:
constraints_tensor = None
tokens, lengths = self.task.get_interactive_tokens_and_lengths(lines, encode_fn)
itr = self.task.get_batch_iterator(
dataset=self.task.build_dataset_for_inference(
tokens, lengths, constraints=constraints_tensor
),
max_tokens=self.cfg.dataset.max_tokens,
max_sentences=self.cfg.dataset.batch_size,
max_positions=self.max_positions,
ignore_invalid_inputs=self.cfg.dataset.skip_invalid_size_inputs_valid_test,
).next_epoch_itr(shuffle=False)
for batch in itr:
ids = batch["id"]
src_tokens = batch["net_input"]["src_tokens"]
src_lengths = batch["net_input"]["src_lengths"]
constraints = batch.get("constraints", None)
yield Batch(
ids=ids,
src_tokens=src_tokens,
src_lengths=src_lengths,
constraints=constraints,
)
def generate_for_text_file_input(self, input):
start_time = time.time()
total_translate_time = 0
hypo_outputs = []
start_id = 0
for inputs in self.buffered_read(input, self.cfg.interactive.buffer_size):
results = []
for batch in self.make_batches(inputs, dummy_encode_fn):
bsz = batch.src_tokens.size(0)
src_tokens = batch.src_tokens
src_lengths = batch.src_lengths
constraints = batch.constraints
if self.use_cuda:
src_tokens = src_tokens.cuda()
src_lengths = src_lengths.cuda()
if constraints is not None:
constraints = constraints.cuda()
sample = {
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
},
}
translate_start_time = time.time()
translations = self.task.inference_step(
self.generator, self.models, sample, constraints=constraints
)
translate_time = time.time() - translate_start_time
total_translate_time += translate_time
list_constraints = [[] for _ in range(bsz)]
if self.cfg.generation.constraints:
list_constraints = [unpack_constraints(c) for c in constraints]
for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
src_tokens_i = utils.strip_pad(src_tokens[i], self.tgt_dict.pad())
constraints = list_constraints[i]
results.append(
(
start_id + id,
src_tokens_i,
hypos,
{
"constraints": constraints,
"time": translate_time / len(translations),
},
)
)
# sort output to match input order
for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]):
output = {}
output["src_tokens"] = []
# src_str = ""
if self.src_dict is not None:
src_str = self.src_dict.string(
src_tokens, self.cfg.common_eval.post_process
)
output["src_tokens"] = src_str.split()
# Process top predictions
output["hypotheses"] = []
for hypo in hypos[: min(len(hypos), self.cfg.generation.nbest)]:
hypo_str = self.tgt_dict.string(
hypo["tokens"].int().cpu(),
self.cfg.common_eval.post_process,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(
self.generator
),
)
output["hypotheses"].append(
{
"hypo_tokens": hypo_str.split(),
"alignment": hypo["alignment"],
}
)
hypo_outputs.append(output)
# update running id_ counter
start_id += len(inputs)
logging.info(
"Total time: {:.3f} seconds; translation time: {:.3f}".format(
time.time() - start_time, total_translate_time
)
)
return hypo_outputs
def split_phone_segments(self, phones, max_segment_len=0):
phone_segments = []
phone_splits = phones.split()
seps = []
for idx in range(len(phone_splits)):
ph = phone_splits[idx]
if ph in PHONE_SPLITTER:
seps.append(idx)
if len(seps) <= 0:
return [phones]
if seps[-1] < len(phone_splits) - 1:
seps.append(len(phone_splits) - 1)
segment_start = 0
segment_end = 0
for idx in range(len(seps)):
seglen = seps[idx] - segment_start + 1
if seglen >= max_segment_len or idx == len(seps) - 1:
segment_end = segment_start + seglen
phone_segments.append(" ".join(phone_splits[segment_start:segment_end]))
segment_start = segment_end
else:
continue
reproduce_phone = " ".join(phone_segments)
if phones != reproduce_phone:
logging.info(f"ERROR!!!!! segments shorter than phones")
exit()
return phone_segments
def generate_for_long_input_text(self, input_phones, max_segment_len=0):
total_translate_time = 0
input_segments = []
segment_lens = []
for input in input_phones:
segments = self.split_phone_segments(input, max_segment_len)
segment_lens.append(len(segments))
input_segments.extend(segments)
logging.info(
f"Spliting {len(input_phones)} inputs into {len(input_segments)} segments"
)
results = []
start_id = 0
for batch in self.make_batches(input_segments, dummy_encode_fn):
bsz = batch.src_tokens.size(0)
src_tokens = batch.src_tokens
src_lengths = batch.src_lengths
constraints = batch.constraints
if self.use_cuda:
src_tokens = src_tokens.cuda()
src_lengths = src_lengths.cuda()
if constraints is not None:
constraints = constraints.cuda()
sample = {
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
},
}
logging.info(f"processing batch: {bsz}")
translate_start_time = time.time()
translations = self.task.inference_step(
self.generator, self.models, sample, constraints=constraints
)
translate_time = time.time() - translate_start_time
total_translate_time += translate_time
for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
results.append((start_id + id, hypos))
segment_results = []
sorted_results = sorted(results, key=lambda x: x[0])
start_pos = 0
for sl in segment_lens:
segment_results.append(sorted_results[start_pos : start_pos + sl])
start_pos += sl
assert len(input_phones) == len(segment_results)
hypo_tokens = []
for seg_res in segment_results:
token_res = []
for id_, hypos in seg_res:
# Process top predictions
hypo = hypos[0]
hypo_str = self.tgt_dict.string(
hypo["tokens"].int().cpu(),
self.cfg.common_eval.post_process,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(
self.generator
),
)
token_res.extend(hypo_str.split())
hypo_tokens.append(token_res)
return hypo_tokens, total_translate_time
def generate_for_long_text_input_file(self, input, max_segment_len=0):
start_time = time.time()
total_translate_time = 0
hypo_outputs = []
for inputs in self.buffered_read(input, self.cfg.interactive.buffer_size):
logging.info(f"processing inputs: {len(inputs)}")
# for input_phones in tqdm(inputs):
hypo_tokens, translate_time = self.generate_for_long_input_text(
inputs, max_segment_len=max_segment_len
)
total_translate_time += translate_time
hypo_outputs.extend(hypo_tokens)
logging.info(
"Total time: {:.3f} seconds; translation time: {:.3f}".format(
time.time() - start_time, total_translate_time
)
)
return hypo_outputs
def infer(unk_args, output_file, max_seg_len):
output_fp = sys.stdout
if output_file is not None:
output_fp = open(output_file, "w")
t2u = Text2TokenGenerator(unk_args)
if max_seg_len <= 0:
speech_tokens_info = t2u.generate_for_text_file_input(t2u.cfg.interactive.input)
for infor in speech_tokens_info:
output_fp.write(" ".join(infor["hypotheses"][0]["hypo_tokens"]) + "\n")
else:
speech_tokens_info = t2u.generate_for_long_text_input_file(
t2u.cfg.interactive.input, max_segment_len=max_seg_len
)
for infor in speech_tokens_info:
output_fp.write(" ".join(infor) + "\n")
output_fp.flush()
output_fp.close()
return
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--output",
dest="output",
required=False,
default=None,
help="output file",
)
parser.add_argument(
"--max-seg-len",
dest="max_seg_len",
required=False,
default=0,
type=int,
help="max segment length",
)
args, unknown_args = parser.parse_known_args()
infer(unknown_args, args.output, args.max_seg_len)
|