File size: 9,449 Bytes
cd8454d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# Copyright (C) 2025. Huawei Technologies Co., Ltd. All Rights Reserved. (authors: Yusen Sun,
# Xiao Chen)
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from simple_infer import Text2TokenGenerator, dummy_encode_fn
from fairseq.dataclass.configs import FairseqConfig
import fileinput
from fairseq import utils, options
from fairseq.token_generation_constraints import pack_constraints, unpack_constraints
from fairseq_cli.generate import get_symbols_to_strip_from_output
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from collections import namedtuple
import time
import logging
import sys
import os
from tqdm import tqdm
Batch = namedtuple("Batch", "ids src_tokens src_lengths constraints")
class T2USeedTTS(Text2TokenGenerator):
def __init__(self, args):
super().__init__(args)
def buffered_read(self, input, buffer_size):
buffer = []
with fileinput.input(
files=[input], openhook=fileinput.hook_encoded("utf-8")
) as h:
for src_str in h:
fields = src_str.strip().split("|")
phones = self.text2phone(fields[-1])
buffer.append(
[fields[0], fields[1], fields[2], fields[3], phones]
) # (ref_wav, ref_wav_tokens, id, text, phones)
if len(buffer) >= buffer_size:
yield buffer
buffer = []
if len(buffer) > 0:
yield buffer
def generate_for_text_file_input(self, input):
start_time = time.time()
total_translate_time = 0
hypo_outputs = []
start_id = 0
for inputs in self.buffered_read(input, self.cfg.interactive.buffer_size):
phone_lines = [x[-1] for x in inputs]
results = []
for batch in self.make_batches(phone_lines, dummy_encode_fn):
bsz = batch.src_tokens.size(0)
src_tokens = batch.src_tokens
src_lengths = batch.src_lengths
constraints = batch.constraints
if self.use_cuda:
src_tokens = src_tokens.cuda()
src_lengths = src_lengths.cuda()
if constraints is not None:
constraints = constraints.cuda()
sample = {
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
},
}
logging.info(f"Processing batch of size: {bsz}")
translate_start_time = time.time()
translations = self.task.inference_step(
self.generator, self.models, sample, constraints=constraints
)
translate_time = time.time() - translate_start_time
total_translate_time += translate_time
list_constraints = [[] for _ in range(bsz)]
# if self.cfg.generation.constraints:
# list_constraints = [unpack_constraints(c) for c in constraints]
for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
src_tokens_i = utils.strip_pad(src_tokens[i], self.tgt_dict.pad())
constraints = list_constraints[i]
results.append(
(
start_id + id,
src_tokens_i,
hypos,
{
"constraints": constraints,
"time": translate_time / len(translations),
},
)
)
# sort output to match input order
for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]):
output = {}
output["src_tokens"] = []
# src info
input_info = inputs[id_ % self.cfg.interactive.buffer_size]
output["src_info"] = input_info
# src_str = ""
if self.src_dict is not None:
src_str = self.src_dict.string(
src_tokens, self.cfg.common_eval.post_process
)
if src_str != input_info[-1]:
logging.info(f"ERROR, input output mismatch!!")
logging.info(f"{src_str}")
logging.info(f"{ input_info[-1]}")
output["src_tokens"] = src_str.split()
# Process top predictions
output["hypotheses"] = []
for hypo in hypos[: min(len(hypos), self.cfg.generation.nbest)]:
hypo_str = self.tgt_dict.string(
hypo["tokens"].int().cpu(),
self.cfg.common_eval.post_process,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(
self.generator
),
)
output["hypotheses"].append(
{
"hypo_tokens": hypo_str.split(),
"alignment": hypo["alignment"],
}
)
hypo_outputs.append(output)
logging.info(f"output records: {len(hypo_outputs)}")
# update running id_ counter
start_id += len(inputs)
logging.info(
"Total time: {:.3f} seconds; translation time: {:.3f}".format(
time.time() - start_time, total_translate_time
)
)
return hypo_outputs
def generate_for_long_text_input_file(self, input, max_segment_len=0):
start_time = time.time()
total_translate_time = 0
hypo_outputs = []
for inputs in self.buffered_read(input, self.cfg.interactive.buffer_size):
logging.info(f"processing inputs: {len(inputs)}")
phones = [input_info[-1] for input_info in inputs]
hypo_tokens, translate_time = self.generate_for_long_input_text(
phones, max_segment_len=max_segment_len
)
total_translate_time += translate_time
for tok, info in zip(hypo_tokens, inputs):
hypo_outputs.append({"hypotheses": tok, "src_info": info})
logging.info(
"Total time: {:.3f} seconds; translation time: {:.3f}".format(
time.time() - start_time, total_translate_time
)
)
return hypo_outputs
def infer(unk_args, output_file, max_seg_len):
output_fp = sys.stdout
if output_file is not None:
output_fp = open(output_file, "w")
t2u = T2USeedTTS(unk_args)
logging.info(f"Using max-seg-len = {max_seg_len}")
if max_seg_len <= 0:
speech_tokens_info = t2u.generate_for_text_file_input(t2u.cfg.interactive.input)
for infor in speech_tokens_info:
token_str = " ".join(infor["hypotheses"][0]["hypo_tokens"])
text = infor["src_info"][3]
ref_wav = infor["src_info"][0]
ref_token = infor["src_info"][1]
test_id = infor["src_info"][2]
test_line = f"{ref_wav}|{ref_token}|{test_id}.wav|{token_str}|{text}"
output_fp.write(test_line + "\n")
else:
logging.info(f"Split long text into segments of length: {max_seg_len}")
speech_tokens_info = t2u.generate_for_long_text_input_file(
t2u.cfg.interactive.input, max_segment_len=max_seg_len
)
for infor in speech_tokens_info:
token_str = " ".join(infor["hypotheses"])
text = infor["src_info"][3]
ref_wav = infor["src_info"][0]
ref_token = infor["src_info"][1]
test_id = infor["src_info"][2]
test_line = f"{ref_wav}|{ref_token}|{test_id}.wav|{token_str}|{text}"
output_fp.write(test_line + "\n")
# speech_tokens_info = t2u.generate("只有当科技为本地社群创造价值的时候,才真正有意义。")
# output_fp.write(" ".join(speech_tokens_info["hypotheses"][0]["hypo_tokens"]) + "\n")
output_fp.flush()
output_fp.close()
return
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--output",
dest="output",
required=False,
default=None,
help="output file",
)
parser.add_argument(
"--max-seg-len",
dest="max_seg_len",
required=False,
default=0,
type=int,
help="max segment length",
)
args, unknown_args = parser.parse_known_args()
infer(unknown_args, args.output, args.max_seg_len)
|