File size: 7,979 Bytes
cd8454d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright (C) 2025. Huawei Technologies Co., Ltd. All Rights Reserved. (authors: Dehua Tao)

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""

from __future__ import annotations

import torch
from torch import nn
import torch.nn.functional as F
from torchaudio.models import Conformer

from x_transformers.x_transformers import RotaryEmbedding

from f5_tts.model.modules import (
    TimestepEmbedding,
    ConvNeXtV2Block,
    ConvPositionEmbedding,
    AdaLayerNormZero_Final,
    precompute_freqs_cis,
    get_pos_embed_indices,
)

from model.modules import CADiTBlock

import logging

# Text embedding
class TextEmbedding(nn.Module):
    def __init__(
        self,
        text_num_embeds,
        text_dim,
        should_extend_text=True,
        conv_layers=0,
        conv_mult=2,
    ):
        super().__init__()
        self.text_embed = nn.Embedding(
            text_num_embeds + 1, text_dim
        )  # use 0 as filler token

        self.should_extend_text = should_extend_text
        logging.info(f"should_extend_text={should_extend_text}")

        if conv_layers > 0:
            self.extra_modeling = True
            self.precompute_max_pos = 4096  # ~44s of 24khz audio
            self.register_buffer(
                "freqs_cis",
                precompute_freqs_cis(text_dim, self.precompute_max_pos),
                persistent=False,
            )
            self.text_blocks = nn.Sequential(
                *[
                    ConvNeXtV2Block(text_dim, text_dim * conv_mult)
                    for _ in range(conv_layers)
                ]
            )
            # # Can be deleted
            # self.text_blocks = Conformer(
            #     input_dim=text_dim,
            #     num_heads=8,  # Not sure it is good
            #     ffn_dim=text_dim * conv_mult,
            #     num_layers=conv_layers,
            #     depthwise_conv_kernel_size=7,  # See ConvNeXtV2Block
            # )
        else:
            self.extra_modeling = False

    def forward(self, text: int["b nt"], seq_len, drop_text=False):  # noqa: F722
        text = (
            text + 1
        )  # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
        text = text[
            :, :seq_len
        ]  # curtail if character tokens are more than the mel spec tokens
        batch, text_len = text.shape[0], text.shape[1]

        if self.should_extend_text:
            text = F.pad(text, (0, seq_len - text_len), value=0)
        else:
            seq_len = text_len

        if drop_text:  # cfg for text
            text = torch.zeros_like(text)

        text = self.text_embed(text)  # b n -> b n d

        # possible extra modeling
        if self.extra_modeling:
            # sinus pos emb
            batch_start = torch.zeros((batch,), dtype=torch.long)
            pos_idx = get_pos_embed_indices(
                batch_start, seq_len, max_pos=self.precompute_max_pos
            )
            text_pos_embed = self.freqs_cis[pos_idx]
            text = text + text_pos_embed

            # convnextv2 blocks
            text = self.text_blocks(text)

            # # Can be deleted
            # # conformer blocks
            # lengths = torch.Tensor([text.size(1)] * text.size(0)).to(text.device)
            # text, _ = self.text_blocks(text, lengths)

        return text


# noised input audio embedding


class InputAudioEmbedding(nn.Module):
    def __init__(self, mel_dim, out_dim):
        super().__init__()
        self.proj = nn.Linear(mel_dim * 2, out_dim)
        self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)

    def forward(
        self,
        x: float["b n d"],
        cond: float["b n d"],
        drop_audio_cond=False,
    ):  # noqa: F722
        if drop_audio_cond:  # cfg for cond audio
            cond = torch.zeros_like(cond)

        x = self.proj(torch.cat((x, cond), dim=-1))
        x = self.conv_pos_embed(x) + x
        return x


# Transformer backbone using cross-attention DiT blocks


class CADiT(nn.Module):
    def __init__(
        self,
        *,
        dim,
        depth=8,
        heads=8,
        dim_head=64,
        dropout=0.1,
        ff_mult=4,
        mel_dim=100,
        text_num_embeds=256,
        text_dim=None,
        should_extend_text=True,
        conv_layers=0,
        long_skip_connection=False,
        checkpoint_activations=False,
    ):
        super().__init__()

        self.time_embed = TimestepEmbedding(dim)
        if text_dim is None:
            text_dim = mel_dim
        self.text_embed = TextEmbedding(
            text_num_embeds,
            text_dim,
            should_extend_text=should_extend_text,
            conv_layers=conv_layers,
        )

        # Modification: only concatenate noisy and masked speech
        self.input_embed = InputAudioEmbedding(mel_dim, dim)

        self.rotary_embed = RotaryEmbedding(dim_head)

        self.dim = dim
        self.depth = depth

        # Modification: use cross-attention DiT block
        self.transformer_blocks = nn.ModuleList(
            [
                CADiTBlock(
                    dim=dim,
                    text_dim=text_dim,
                    heads=heads,
                    dim_head=dim_head,
                    ff_mult=ff_mult,
                    dropout=dropout,
                )
                for _ in range(depth)
            ]
        )
        self.long_skip_connection = (
            nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
        )

        self.norm_out = AdaLayerNormZero_Final(dim)  # final modulation
        self.proj_out = nn.Linear(dim, mel_dim)

        self.checkpoint_activations = checkpoint_activations

    def ckpt_wrapper(self, module):
        # https://github.com/chuanyangjin/fast-DiT/blob/main/models.py
        def ckpt_forward(*inputs):
            outputs = module(*inputs)
            return outputs

        return ckpt_forward

    def forward(
        self,
        x: float["b n d"],  # nosied input audio  # noqa: F722
        cond: float["b n d"],  # masked cond audio  # noqa: F722
        text: int["b nt"],  # text  # noqa: F722
        time: float["b"] | float[""],  # time step  # noqa: F821 F722
        drop_audio_cond,  # cfg for cond audio
        drop_text,  # cfg for text
        mask: bool["b n"] | None = None,  # noqa: F722
    ):
        batch, seq_len = x.shape[0], x.shape[1]
        if time.ndim == 0:
            time = time.repeat(batch)

        # t: conditioning time, x: noised input audio
        t = self.time_embed(time)
        text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
        x = self.input_embed(x, cond, drop_audio_cond=drop_audio_cond)

        rope = self.rotary_embed.forward_from_seq_len(seq_len)

        if self.long_skip_connection is not None:
            residual = x

        for block in self.transformer_blocks:
            if self.checkpoint_activations:
                x = torch.utils.checkpoint.checkpoint(
                    self.ckpt_wrapper(block), x, text_embed, t, mask, rope
                )
            else:
                x = block(x, text_embed, t, mask=mask, rope=rope)

        if self.long_skip_connection is not None:
            x = self.long_skip_connection(torch.cat((x, residual), dim=-1))

        x = self.norm_out(x, t)
        output = self.proj_out(x)

        return output