File size: 5,456 Bytes
cd8454d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright (C) 2025. Huawei Technologies Co., Ltd. All Rights Reserved. (authors: Xiao Chen)

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import argparse
import librosa
import logging
import soundfile as sf
import sys
from pathlib import Path


sub_modules = ["", "semantic_tokenizer/f40ms", "semantic_detokenizer"]
for sub in sub_modules:
    sys.path.append(str((Path(__file__).parent / sub).absolute()))

from semantic_tokenizer.f40ms.simple_tokenizer_infer import SpeechTokenizer, TOKENIZER_CFG_NAME
from semantic_detokenizer.chunk_infer import SpeechDetokenizer


class ReconstructionPipeline:
    def __init__(
        self,
        detok_vocoder: str,
        tokenizer_cfg_name: str = TOKENIZER_CFG_NAME,
        tokenizer_cfg_path: str = str(
            (Path(__file__).parent / "semantic_tokenizer/f40ms/config").absolute()
        ),
        tokenizer_ckpt: str = str(
            (
                Path(__file__).parent / "semantic_tokenizer/f40ms/ckpt/model.pt"
            ).absolute()
        ),
        detok_model_cfg: str = str(
            (Path(__file__).parent / "semantic_detokenizer/ckpt/model.yaml").absolute()
        ),
        detok_ckpt: str = str(
            (Path(__file__).parent / "semantic_detokenizer/ckpt/model.pt").absolute()
        ),
        detok_vocab: str = str(
            (
                Path(__file__).parent / "semantic_detokenizer/ckpt/vocab_4096.txt"
            ).absolute()
        ),
    ):
        self.tokenizer_cfg_name = tokenizer_cfg_name
        self.tokenizer = SpeechTokenizer(
            ckpt_path=tokenizer_ckpt,
            cfg_path=tokenizer_cfg_path,
            cfg_name=self.tokenizer_cfg_name,
        )

        self.device = "cuda:0"
        self.detoker = SpeechDetokenizer(
            vocoder_path=detok_vocoder,
            model_cfg=detok_model_cfg,
            ckpt_file=detok_ckpt,
            vocab_file=detok_vocab,
            device=self.device,
        )

        self.token_chunk_len = 75
        self.chunk_cond_proportion = 0.3
        self.chunk_look_ahead = 10
        self.max_ref_duration = 4.5
        self.ref_audio_cut_from_head = False

    def reconstruct(self, ref_wav, input_wav):
        ref_wavs_list = []
        raw_ref_wav, sr = librosa.load(ref_wav, sr=16000)
        ref_wavs_list.append(raw_ref_wav)

        raw_input_wav, sr = librosa.load(input_wav, sr=16000)
        ref_wavs_list.append(raw_input_wav)

        token_list, token_info_list = self.tokenizer.extract(
            ref_wavs_list
        )
        ref_tokens = token_info_list[0]["reduced_unit_sequence"]
        input_tokens = token_info_list[1]["reduced_unit_sequence"]
        logging.info("tokens for ref wav: %s are [%s]" % (ref_wav, ref_tokens))
        logging.info("tokens for input wav: %s are [%s]" % (input_wav, input_tokens))

        generated_wave, target_sample_rate = self.detoker.chunk_generate(
            ref_wav,
            ref_tokens.split(),
            input_tokens.split(),
            self.token_chunk_len,
            self.chunk_cond_proportion,
            self.chunk_look_ahead,
            self.max_ref_duration,
            self.ref_audio_cut_from_head,
        )

        if generated_wave is None:
            logging.info("generation FAILED")
            return None, None
        return generated_wave, target_sample_rate


def main(args):
    # initialize
    reconsturctor = ReconstructionPipeline(
        detok_vocoder=args.detok_vocoder,
    )

    generated_wave, target_sample_rate = reconsturctor.reconstruct(args.ref_wav, args.input_wav)
    with open(args.output_wav, "wb") as f:
        sf.write(f.name, generated_wave, target_sample_rate)
        logging.info(f"write output to: {f.name}")

    logging.info("Finished")
    return


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--tokenizer-ckpt",
        required=False,
        help="path to ckpt",
    )
    parser.add_argument(
        "--tokenizer-cfg-path",
        required=False,
        default="semantic_tokenizer/f40ms/config",
        help="path to config",
    )
    parser.add_argument(
        "--detok-ckpt",
        required=False,
        help="path to ckpt",
    )
    parser.add_argument(
        "--detok-model-cfg",
        required=False,
        help="path to model_cfg",
    )
    parser.add_argument(
        "--detok-vocab",
        required=False,
        help="path to vocab",
    )
    parser.add_argument(
        "--detok-vocoder",
        required=True,
        help="path to vocoder",
    )
    parser.add_argument(
        "--ref-wav",
        required=True,
        help="path to ref wav",
    )
    parser.add_argument(
        "--output-wav",
        required=True,
        help="path to output reconstructed wav",
    )
    parser.add_argument(
        "--input-wav",
        required=True,
        help="input wav to reconstruction",
    )

    args = parser.parse_args()

    main(args)