File size: 17,065 Bytes
5b1443d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
from __future__ import annotations

import torch
from torch import amin  # Necessary for arcsin
import copy
import torch.nn as nn
import numpy as np

from scipy.optimize import curve_fit
from typing import Dict, Any, Tuple, List, Callable


def quantization(x, **params):
	return (torch.div(1, replace_num(params['_s'], num=0, to=10000)) * guarded_torch_power((params['_0'] * x), 1 / 3))


def dequantization(x, **params):
	return (torch.div(1, replace_num(params['_0'], num=0, to=10000)) * guarded_torch_power(params['_s'], torch.tensor(3)) * guarded_torch_power(x, torch.tensor(3)))


def init_linear_scale(  # Symmetric scale. From the study folder
        x: torch.Tensor,
        **kwargs: Dict[str, Any],
    ) -> torch.Tensor:
    assert "bits" in kwargs, "bits must be provided."
    assert "params" in kwargs, "params must be provided."
    assert "qtz_func" in kwargs, "qtz_func must be provided."

    bits = kwargs.get('bits')
    params = kwargs.get('params')
    qtz_func = kwargs.get('qtz_func')

    x_ = x.transpose(0, 1)
    x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
    x_ = x_.transpose(0, 1)
    
    quant_min, quant_max = get_min_max_from_bits_signed(bits)
    min_vals, max_vals = torch.aminmax(x_, dim=1)
    min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
    max_vals = torch.max(max_vals, torch.zeros_like(max_vals))

    eps = torch.finfo(torch.float32).eps

    abs_max_val_per_ch = torch.max(-min_vals, max_vals)
    scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
    
    scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)

    # Introduces some noise in scale
    # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
    # scale = scale + 0.01 * torch.randn_like(scale)
    return scale


def init_params(x: torch.Tensor, **kwargs: Dict[str, Any]) -> Dict[str, nn.Parameter]:
	params = {
		'_0': init_ones(x, qtz_func=quantization, deqtz_func=dequantization, param='_0', params_list=['_0', '_s'], **kwargs),
	}
	params['_s'] = init_linear_scale(x, params=params, qtz_func=quantization, **kwargs)
	params = {k: nn.Parameter(v, requires_grad=False) for k, v in params.items()}
	
	if 'post_init_hook' in kwargs:
		kwargs['post_init_hook'](parameters=params)
	
	params = learn_parameters(x, params,
		qtz_func=quantization,
		deqtz_func=dequantization,
		bits=kwargs['bits'],
		target_dtype=torch.int8,
		epochs=500,
		early_stop=False,
	)
	if 'post_train_hook' in kwargs:
		kwargs['post_train_hook'](parameters=params)
	
	return params


############### Numpy Qtz ###############


def np_quantization(x, _0, _s):
	return (np.divide(1, np_replace_num(_s, num=0, to=10000)) * np_guarded_power((_0 * x), 1 / 3))


def np_dequantization(x, _0, _s):
	return (np.divide(1, np_replace_num(_0, num=0, to=10000)) * np_guarded_power(_s, np.array(3)) * np_guarded_power(x, np.array(3)))


def fit_func(x, _0, _s):
    x_ = np_quantization(x, _0, _s)
    x_ = np_dequantization(x_, _0, _s)
    return x_



############### HELPERS ###############

def domain_guard(
        x: torch.Tensor, 
        min: float = None, 
        max: float = None, 
        posinf: float = None,
        neginf: float = None,
        nan: float = None
    ) -> torch.Tensor:
    """Guard a tensor to a valid domain."""
    x = torch.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
    if min is not None or max is not None:
        x = torch.clamp(x, min=min, max=max)
    return x


def replace_num(x: torch.Tensor, num: float, to: float) -> torch.Tensor:
    """Replace a number in a tensor with another number.
    
    Args:
        x (torch.Tensor): The input tensor.
        num (float): The number to replace.
        to (float): The number to replace with.

    Returns:
        torch.Tensor: The tensor with the number replaced.
    """
    return torch.where(x == num, to, x)


def guarded_torch_power(x: torch.Tensor, exp: float) -> torch.Tensor:
    """Guard the power operation to a valid domain."""
    return torch.pow(x, exp) if exp >= 1 else torch.pow(torch.relu(x), exp)


def init_ones(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
    val = torch.amin(x, dim=1)
    return torch.ones_like(val, dtype=torch.float32, device=x.device)


def init_rand(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
    val = torch.amin(x, dim=1)
    return torch.randn_like(val, dtype=torch.float32, device=x.device)


def init_space_search(
        x: torch.Tensor,
        **kwargs: Dict[str, Any],
    ) -> torch.Tensor:

    def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
        """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
        for _ in range(n_params * 10):  # The first iteration generates 10 times more parameters
            yield init_rand(tensor) * max_initial  # Generates n_params in range [-max_initial, max_initial]

    def _search_param(tensors: List[torch.tensor], n_params):
        """Takes the best parameters and generates new parameters around the mean of the best parameters."""
        torch_tensors = torch.stack(tensors)
        min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
        abs_max_val_per_ch = torch.max(-min_vals, max_vals)
        mean = torch.mean(torch_tensors, dim=0)
        for _ in range(n_params):  # Generates n_params around the mean of the tensors
            yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean

    def _calc(x, qtz_func, deqtz_func, **params):
        x_ = x.transpose(0, 1)
        x_ = qtz_func(x=x_, **params)
        x_ = deqtz_func(x=x_, **params)
        x_ = x_.transpose(0, 1)
        return x_

    assert "qtz_func" in kwargs, "qtz_func must be provided."
    assert "deqtz_func" in kwargs, "deqtz_func must be provided."
    assert "params_list" in kwargs, "params list must be provided."
    assert "param" in kwargs, "param must be provided."

    qtz_func = kwargs.get('qtz_func')
    deqtz_func = kwargs.get('deqtz_func')
    params_list = kwargs.get('params_list')
    param = kwargs.get('param')

    n_runs = 50                # Number of runs to try to find the best parameters
    n_random_params = 50       # Number of random parameters to generate
    n_best_to_pick = 5         # Number of best parameters to pick after each run
    max_initial = 10000        # Maximum value to initialize the parameters

    # Initializes the parameters
    base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
    params = _build_initial_param(x, max_initial, n_random_params)

    # Performs the search
    for _ in range(n_runs):
        
        best_params = []
        for param_ in params:
            try:
                x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
                loss_ones = nn.MSELoss()(x, x_)

                if len(best_params) < n_best_to_pick:
                    best_params.append((param_, loss_ones.item()))
                    best_params = sorted(best_params, key=lambda x: x[1])
                elif loss_ones < best_params[-1][1]:
                    best_params[-1] = (param_, loss_ones.item())
                    best_params = sorted(best_params, key=lambda x: x[1])

            except Exception:  # The parameters might not be valid for the function's domain
                continue

        # Generates new parameters around the mean
        params = _search_param([p for p, _ in best_params], n_random_params)

    # Checks if the best parameter is better than the init_ones
    p_ones = init_ones(x, **kwargs)
    x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
    loss_ones = nn.MSELoss()(x, x_)

    # Checks if the best parameter is better than the init_rand
    p_rand = init_rand(x, **kwargs)
    x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
    loss_rand = nn.MSELoss()(x, x_)

    if loss_rand < best_params[0][1] and loss_rand < loss_ones:
        return p_rand
    elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
        return p_ones
    else:
        return best_params[0][0]


def init_linear_scale(  # Symmetric scale. From the study folder
        x: torch.Tensor,
        **kwargs: Dict[str, Any],
    ) -> torch.Tensor:
    assert "bits" in kwargs, "bits must be provided."
    assert "params" in kwargs, "params must be provided."
    assert "qtz_func" in kwargs, "qtz_func must be provided."

    bits = kwargs.get('bits')
    params = kwargs.get('params')
    qtz_func = kwargs.get('qtz_func')

    x_ = x.transpose(0, 1)
    x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
    x_ = x_.transpose(0, 1)
    
    quant_min, quant_max = get_min_max_from_bits_signed(bits)
    min_vals, max_vals = torch.aminmax(x_, dim=1)
    min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
    max_vals = torch.max(max_vals, torch.zeros_like(max_vals))

    eps = torch.finfo(torch.float32).eps

    abs_max_val_per_ch = torch.max(-min_vals, max_vals)
    scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
    
    scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)

    # Introduces some noise in scale
    # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
    # scale = scale + 0.01 * torch.randn_like(scale)
    return scale


def init_non_linear_regression_fit(
        x: torch.Tensor,
        **kwargs: Dict[str, Any],
    ) -> torch.Tensor:

    assert "params_list" in kwargs, "params list must be provided."
    assert "np_fit_func" in kwargs, "np_fit_func must be provided."
    assert "p0" in kwargs, "p0 must be provided."
    np_fit_func = kwargs.get('np_fit_func')
    params_list = kwargs.get('params_list')
    p0 = kwargs.get('p0')

    def _fit(xdata: np.ndarray, ydata: np.ndarray, func: Callable, p0: List[float]):
        popt, _ = curve_fit(
            func, 
            xdata, 
            ydata, 
            maxfev=1000,
            p0=p0,
            method='lm'
        )
        return popt

    # 1. Needs to convert the torch tensor to numpy tensor
    xdata = x.cpu().numpy()

    # 2. Sorts the data so that it makes it easier to fit to it
    sorted_xdata = np.sort(xdata, axis=-1)

    p0 = {k: v.cpu().numpy() for k, v in p0.items()}
    params_list = sorted(params_list)  # We need to make sure that it matches the numpy fit func arg order

    # 3. Finds the best parameters for each channel
    try:
        params = []
        for i in range(sorted_xdata.shape[0]):
            xdata_ = sorted_xdata[i]
            p0_ = [p0[p][i] for p in params_list]
            ch_params = _fit(xdata_, xdata_, np_fit_func, p0_)
            params.append(ch_params)

        # 4. Builds the parameters
        result = {}
        for i, p in enumerate(params_list):
            result[p] = torch.tensor([p_[i] for p_ in params], dtype=torch.float32).to(x.device)

        return result

    except ValueError as e:
        print(f"Could not fit the function with error: {e}")
        print(f"Using fallback result...")
        return {
            k: torch.tensor(v, dtype=torch.float32).to(x.device) for k, v in p0.items()
        }


def init_zeros(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
    val = torch.amin(x, dim=1)
    return torch.zeros_like(val, dtype=torch.float32, device=x.device)


def init_inner_scale(tensor: torch.Tensor, _min: float = torch.inf, _max: float = torch.inf) -> torch.Tensor:
    # Calculate the original minimum and maximum values
    min_vals, max_vals = torch.aminmax(tensor, dim=-1)
    x_min = torch.min(min_vals, torch.zeros_like(min_vals))
    x_max = torch.max(max_vals, torch.zeros_like(max_vals))

    if _max is torch.inf:  # We do not need to scale the tensor. Just need to move it
        return torch.ones_like(x_min)
    
    # Calculate the scale factor
    scale = (_max - _min) / (x_max - x_min)
    return scale



############## Quant ###############

@torch.enable_grad()
def learn_parameters(
    x: torch.Tensor,
    params: Dict[str, nn.Parameter],
    qtz_func: nn.Module,
    deqtz_func: nn.Module,
    bits: int,
    target_dtype: torch.dtype,
    epochs: int = 1000,
    early_stop: bool = True,
    do_report: bool = False
) -> Tuple[Dict[str, nn.Parameter], torch.Tensor]:
    loss_fn = nn.MSELoss()

    # Determines the initial learning rate by computing the initial loss and multiplying it by
    # the order of magnitude of the loss divided by 2
    quant = quantize(x, params, qtz_func, bits, target_dtype)
    dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
    loss = loss_fn(x, dequant)

    base_lr = 0.1
    exponent = int(np.floor(np.log10(loss.item())))
    lr = base_lr * (10 ** (exponent // 2))
    
    # Requires gradients in the parameters
    for p in params.values():
        p.requires_grad = True
        p.grad = None

    param_keys = list(params.keys())
    param_values = list(params.values())

    # Defines optimizer and loss function
    optimizer = torch.optim.Adam(param_values, lr=lr)
    scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=1.0, end_factor=0.01, total_iters=epochs // 10)

    # Contains the best loss and the best parameters 
    best_loss = float("inf")
    best_params = None

    # Used to stop the search early
    min_delta = 1e-7
    acc_loss = []
    percent_epochs_before_stop = 0.1

    for i in range(epochs):
        optimizer.zero_grad()

        quant = quantize(x, params, qtz_func, bits, target_dtype)
        dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
        loss = loss_fn(x, dequant)

        if loss.isnan() or loss.isinf():
            raise Exception("Loss is NaN or Inf. Stopping the search.")

        loss.backward()
        optimizer.step()
        scheduler.step()

        acc_loss.append(loss.item())

        # Reports loss every 10 steps
        if i % 10 == 0 and do_report:
            print(f"Epoch {i}: Loss {loss.item()}")

        # Optimizes the parameter search by storing the best loss and the parameters
        if loss.item() < best_loss:
            best_loss = loss.item()
            best_params = copy.deepcopy({
                k: v for k, v in params.items() if k in param_keys
            })

        # We also stop the search if the loss has not considerably during the last 10% epochs
        if early_stop:
            epochs_before_stop = int(epochs * percent_epochs_before_stop)
            if i > epochs_before_stop and abs(acc_loss[i - epochs_before_stop] - acc_loss[i]) < min_delta:
                break

    # No longer requires gradients in the parameters
    for p in best_params.values():
        p.requires_grad = False
        p.grad = None
    
    if do_report:
        return best_params, acc_loss
    else:
        return best_params


def quantize(
    x: torch.Tensor,
    params: Dict[str, nn.Parameter],
    func: nn.Module,
    bits: int,
    target_dtype: torch.dtype = torch.int8
) -> torch.Tensor:
    quant_min, quant_max = get_min_max_from_bits_signed(bits)
    x = x.transpose(0, 1)  # Aligns shapes
    x = func(x=x, **params)
    x = x.transpose(0, 1)
    x = torch.clamp(round_func_BPDA(x), quant_min, quant_max).to(target_dtype)
    return x


def dequantize(
    x: torch.Tensor,
    params: Dict[str, nn.Parameter],
    func: nn.Module,
    bits: int,
    out_dtype: torch.dtype
) -> torch.Tensor:
    x = x.to(dtype=out_dtype)
    x = x.transpose(0, 1)
    x = func(x=x, **params)
    x = x.transpose(0, 1)
    return x


def round_func_BPDA(input):
    # This is equivalent to replacing round function (non-differentiable) with
    # an identity function (differentiable) only when backward.
    forward_value = torch.round(input)
    out = input.clone()
    out.data = forward_value.data
    return out


def get_min_max_from_bits_signed(bit_width: int) -> Tuple[int, int]:
    return -2 ** (bit_width - 1), 2 ** (bit_width - 1) - 1



############## Numpy ###############

def np_domain_guard(
        x: np.ndarray,
        min: float = None,
        max: float = None,
        posinf: float = None,
        neginf: float = None,
        nan: float = None
    ) -> np.ndarray:
    """Guard a tensor to a valid domain."""
    x = np.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
    if min is not None or max is not None:
        x = np.clip(x, min, max)
    return x


def np_replace_num(x: np.ndarray, num: float, to: float) -> np.ndarray:
    """Replace a number in a tensor with another number.
    
    Args:
        x (np.ndarray): The input tensor.
        num (float): The number to replace.
        to (float): The number to replace with.

    Returns:
        np.ndarray: The tensor with the number replaced.
    """
    return np.where(x == num, to, x)


def np_guarded_power(x: np.ndarray, exp: float) -> np.ndarray:
    """Guard the power operation to a valid domain."""
    return np.power(x, exp) if exp >= 1 else np.power(np.maximum(x, 0), exp)