File size: 12,760 Bytes
bb7f76d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# import re
# from pathlib import Path
# from datasets import load_dataset, Dataset, DatasetDict, Features, Value, Image
# import re
# from typing import Dict, List, Optional
# from pathlib import Path
# from datasets import Dataset, DatasetDict, concatenate_datasets, Features, Value, Sequence


# # ------------------------------------------------------------------
# # 0) Load your JSON β†’ `raw_ds` exactly as before
# # ------------------------------------------------------------------

# files = [
#     "pool_multiple_choice_chunk_01.json",
#     "pool_multiple_choice_chunk_02.json",
#     "pool_multiple_choice_chunk_03.json",
#     "pool_multiple_choice_chunk_04.json",
#     "pool_numerical_chunk_01.json",
#     "pool_numerical_chunk_02.json",
#     "pool_numerical_chunk_03.json",
#     "pool_regression_chunk_01.json",
# ]

# # ---- 1-4. load, trim, normalise ----------------------------------------
# def load_trim_normalise(fp, cap=10_000):
#     ds = Dataset.from_json(fp)

#     # a) truncate
#     ds = ds.select(range(min(cap, len(ds))))

#     # b) make sure `options` exists and is always list[str]
#     if "options" not in ds.column_names:
#         ds = ds.add_column("options", [[]] * len(ds))
#     else:
#         ds = ds.map(
#             lambda ex: {"options": [str(o) for o in (ex["options"] or [])]},
#             remove_columns=[], num_proc=4,
#         )

#     return ds

# ds_list = [load_trim_normalise(fp) for fp in files]

# # ---- 4. align feature schema explicitly (all files now identical) -------
# common_features = Features({
#     "problem_id"  : Value("int64"),
#     "problem"     : Value("string"),
#     "data_type"   : Value("string"),
#     "problem_type": Value("string"),
#     "options"     : Sequence(Value("string")),
#     "solution"    : Value("string"),
#     "path"        : Value("string"),
#     "data_source" : Value("string"),
# })
# ds_list = [d.cast(common_features) for d in ds_list]

# # ---- 5. concatenate -----------------------------------------------------
# raw_train = concatenate_datasets(ds_list)
# raw_ds = DatasetDict({"train": raw_train})

# # ------------------------------------------------------------------
# # 1) Build the question (unchanged)
# # ------------------------------------------------------------------
# def build_question(example):
#     q = (
#         example["problem"] + " Options:\n" + "\n".join(example["options"])
#         if example["problem_type"] == "multiple choice"
#         else example["problem"]
#     )
#     example["problem"] = q
#     return example


# def extract_answer(predict: str) -> Optional[str]:
#     """
#     Extracts the content of the <answer>…</answer> block from `predict`.
#     Returns the inner text (with leading/trailing whitespace stripped),
#     or None if no <answer> tag is found.
#     """
#     match = re.search(r"<answer>([\s\S]*?)</answer>", predict, re.DOTALL)
#     if not match:
#         return predict
#     return match.group(1).strip()



# def add_answer(example):
#     # assumes the ground-truth answer (tagged) is in `solution`
#     example["answer"] = extract_answer(example["solution"])
#     return example

# # ------------------------------------------------------------------
# # 3) Embed image bytes (column name stays "images")
# # ------------------------------------------------------------------
# def to_embedded_image(example):
#     if example["data_type"] != "image":
#         example["images"] = None
#         return example
#     with open(example["path"], "rb") as f:
#         img_bytes = f.read()
#     example["images"] = {"bytes": img_bytes, "path": None}
#     return example

# # ------------------------------------------------------------------
# # 4) Full pipeline
# # ------------------------------------------------------------------
# processed = (
#     raw_ds["train"]
#         .map(build_question, num_proc=4)
#         .map(add_answer,     num_proc=4)
#         .map(to_embedded_image, num_proc=4)
#         .remove_columns([
#             "path", "data_type", "options", "problem_type", "solution",
#             "problem_id", "data_source"          # ← drop these too
#         ])
# )

# # ------------------------------------------------------------------
# # 5) Schema must match the final column names
# # ------------------------------------------------------------------
# features = Features({
#     "problem": Value("string"),
#     "answer" : Value("string"),
#     "images" : Image(),                      # keep plural name
# })
# processed = processed.cast(features)

# # ------------------------------------------------------------------
# # 6) Write Parquet shards (file prefix inside the folder)
# # ------------------------------------------------------------------
# out_dir = Path("qwen2.5_vl_portable")
# out_dir.mkdir(parents=True, exist_ok=True)

# # processed.to_parquet(str(out_dir / "train.parquet"))   # β†’ train-00000-of-00001.parquet
# processed.to_parquet(str("./hf_data/train.parquet"))  
# print("βœ“ Dataset written with embedded images and answers β†’", out_dir.resolve())


# import re
# from pathlib import Path
# from typing import Dict, List, Optional

# from datasets import (
#     Dataset,
#     DatasetDict,
#     concatenate_datasets,
#     Features,
#     Value,
#     Sequence,
#     Image,
# )

# # ------------------------------------------------------------------
# # 0) Inputs
# # ------------------------------------------------------------------
# files = [
#     "pool_multiple_choice_chunk_01.json",
#     "pool_multiple_choice_chunk_02.json",
#     "pool_multiple_choice_chunk_03.json",
#     "pool_multiple_choice_chunk_04.json",
#     "pool_numerical_chunk_01.json",
#     "pool_numerical_chunk_02.json",
#     "pool_numerical_chunk_03.json",
#     "pool_regression_chunk_01.json",
# ]

# # ------------------------------------------------------------------
# # 1) Define common meta schema (what you want to keep in the output)
# # ------------------------------------------------------------------
# common_features = Features({
#     "problem_id"  : Value("int64"),
#     "problem"     : Value("string"),
#     "data_type"   : Value("string"),
#     "problem_type": Value("string"),
#     "options"     : Sequence(Value("string")),
#     "solution"    : Value("string"),
#     "path"        : Value("string"),
#     "data_source" : Value("string"),
# })

# # Final (superset) schema to write: meta + new columns
# full_features = common_features.copy()
# full_features["answer"] = Value("string")
# full_features["images"] = Image()   # plural name kept, binary-friendly


# # ------------------------------------------------------------------
# # 2) Load + normalize each JSON
# # ------------------------------------------------------------------
# def load_trim_normalise(fp: str, cap: int = 10_000) -> Dataset:
#     ds = Dataset.from_json(fp)

#     # truncate if desired
#     ds = ds.select(range(min(cap, len(ds))))

#     # ensure `options` exists and is always list[str]
#     if "options" not in ds.column_names:
#         ds = ds.add_column("options", [[]] * len(ds))
#     else:
#         ds = ds.map(
#             lambda ex: {"options": [str(o) for o in (ex["options"] or [])]},
#             remove_columns=[],
#             num_proc=4,
#         )

#     # align to the common meta schema early (helps concat)
#     # Some JSONs may not have all fields; add missing with defaults first.
#     missing_cols = [k for k in common_features.keys() if k not in ds.column_names]
#     for mc in missing_cols:
#         # create sensible defaults
#         if mc == "options":
#             ds = ds.add_column(mc, [[]] * len(ds))
#         elif common_features[mc].dtype == "int64":
#             ds = ds.add_column(mc, [0] * len(ds))
#         else:
#             ds = ds.add_column(mc, [""] * len(ds))

#     ds = ds.cast(common_features)
#     return ds

# ds_list = [load_trim_normalise(fp) for fp in files]

# # Concatenate shards
# raw_train = concatenate_datasets(ds_list)
# raw_ds = DatasetDict({"train": raw_train})


# # ------------------------------------------------------------------
# # 3) Processing fns
# # ------------------------------------------------------------------
# def build_question(example: Dict) -> Dict:
#     """
#     If multiple-choice, append the options to the text.
#     Overwrites the `problem` field in-place (kept in output).
#     """
#     if example["problem_type"] == "multiple choice":
#         opts = example.get("options") or []
#         q = example["problem"] + " Options:\n" + "\n".join(opts)
#         example["problem"] = q
#     return example


# def extract_answer(predict: str) -> Optional[str]:
#     """
#     Return inner text of <answer>...</answer>, stripped.
#     If no tag is found, return the original string.
#     """
#     if predict is None:
#         return None
#     match = re.search(r"<answer>([\s\S]*?)</answer>", predict, re.DOTALL)
#     if not match:
#         return predict
#     return match.group(1).strip()


# def add_answer(example: Dict) -> Dict:
#     example["answer"] = extract_answer(example.get("solution", ""))
#     return example


# def to_embedded_image(example: Dict) -> Dict:
#     """
#     If data_type == 'image', embed bytes for HF Image() feature.
#     Otherwise leave as None.
#     """
#     if example.get("data_type") != "image":
#         example["images"] = None
#         return example

#     path = example.get("path")
#     if not path:
#         example["images"] = None
#         return example

#     try:
#         with open(path, "rb") as f:
#             img_bytes = f.read()
#         example["images"] = {"bytes": img_bytes, "path": None}
#     except Exception:
#         # If image is missing or unreadable, keep None so cast still works
#         example["images"] = None
#     return example


# # ------------------------------------------------------------------
# # 4) Apply pipeline (do NOT drop meta columns you want to keep)
# # ------------------------------------------------------------------
# processed = (
#     raw_ds["train"]
#         .map(build_question,     num_proc=4)
#         .map(add_answer,         num_proc=4)
#         .map(to_embedded_image,  num_proc=4)
#         .cast(full_features)                     # <- ensure final schema
# )

# # Optional: control output column ordering
# processed = processed.select_columns(list(full_features.keys()))

# # ------------------------------------------------------------------
# # 5) Write Parquet
# # ------------------------------------------------------------------
# out_dir = Path("./hf_data")
# out_dir.mkdir(parents=True, exist_ok=True)

# out_path = out_dir / "train.parquet"
# processed.to_parquet(str(out_path))

# print("βœ“ Wrote:", out_path.resolve())
# print("Columns:", list(processed.features.keys()))


# ------------------------------------------------------------------
# 4.1) Downsample to 30k, mainly reducing math-heavy sources
# ------------------------------------------------------------------
from collections import Counter

TARGET_SIZE = 30_000
MATH_SHARE  = 0.20   # keep ~20% math (tweak if you want)
SEED        = 2025

# Define which sources are "mathy"
MATH_SOURCES = {
    "Multimath-300k",
    "TabMWP",
    "Geometry3K",
    "CLEVR-Math",
    "DVQA",
    "FigureQA",
    "ChartQA",
    "PlotQA",
    "EXAMS-V-train/Mathematics",
    "UniGeo",
    "GeoQA+",
}

def is_math_source(name: Optional[str]) -> bool:
    if not name:
        return False
    return name in MATH_SOURCES or ("math" in name.lower())

# Split
math_ds = processed.filter(lambda ex: is_math_source(ex.get("data_source")), num_proc=4)
non_math_ds = processed.filter(lambda ex: not is_math_source(ex.get("data_source")), num_proc=4)

# Decide quotas
non_math_quota = min(len(non_math_ds), int(TARGET_SIZE * (1 - MATH_SHARE)))
math_quota = TARGET_SIZE - non_math_quota
math_quota = min(math_quota, len(math_ds))  # guard if math is too small

# Sample deterministically
non_math_sample = non_math_ds.shuffle(seed=SEED).select(range(non_math_quota))
math_sample     = math_ds.shuffle(seed=SEED).select(range(math_quota))

# Combine and shuffle
final = concatenate_datasets([non_math_sample, math_sample]).shuffle(seed=SEED)

# Quick sanity printout
cnt = Counter(final["data_source"])
total = len(final)
print(f"Final size: {total} (non-math {non_math_quota}, math {math_quota})")
for name, n in sorted(cnt.items(), key=lambda x: -x[1])[:25]:
    pct = n / total
    print(f"{name:30s} {n:6d}  {pct:7.3%}")

# Use this 'final' dataset for writing
processed = final
out_path = out_dir / "train_30k.parquet"
processed.to_parquet(str(out_path))
print("βœ“ Wrote:", out_path.resolve())