File size: 12,422 Bytes
770499e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import pandas as pd
import streamlit as st
import plotly.express as px
from plotly import graph_objs as go
st.title("Demand Trend Analysis")
df = pd.read_csv("data/cleaned_data.csv",parse_dates=['Order Date'],index_col='Order Date')
df_train = df.index< '2018-01-01'
df_test = df.index>= '2018-01-01'
df_train = df[df_train]
df_test = df[df_test]
time_pred = ["Past","Future"]
#display the years of data as a slider 2015-2017 for past and 2018 for future
k = st.sidebar.selectbox("Time",time_pred)
if k == "Past":
n_years = st.sidebar.slider("Years of data", 2015, 2016, 2017)
periods = 12*n_years
else:
n_years = st.sidebar.slider("Years of data", 2018,2019)
periods = 12
@st.cache_data
def load_data():
data = df.copy()
return data
data_load_state = st.text("Loading data...")
data = load_data()
data_load_state.text("Loading data...done!")
st.subheader("Raw data")
st.write(data.head())
def plot_raw_data_year(input:str):
if input == "Past":
df_yearly= df_train.groupby(pd.Grouper(freq='Y'))['Sales'].sum()
df_yearly = pd.DataFrame(df_yearly)
else:
df_yearly = df_test.groupby(pd.Grouper(freq='Y'))['Sales'].sum()
df_yearly = pd.DataFrame(df_yearly)
fig = go.Figure()
fig.add_trace(go.Bar(x=df_yearly.index, y=df_yearly.Sales,name='Yearly Sales' ,))
fig.update_layout(title_text='Yearly Sales',plot_bgcolor='white',xaxis_rangeslider_visible=True)
st.plotly_chart(fig)
plot_raw_data_year(k)
def plot_raw_data_month(input:str):
if input == "Past":
df_monthly= df_train.groupby(pd.Grouper(freq='M'))['Sales'].sum()
df_monthly = pd.DataFrame(df_monthly)
else:
df_monthly = df_test.groupby(pd.Grouper(freq='M'))['Sales'].sum()
df_monthly = pd.DataFrame(df_monthly)
fig = go.Figure()
fig.add_trace(go.Scatter(x=df_monthly.index, y=df_monthly.Sales,name='Monthly Sales' ))
fig.update_layout(title_text= 'Monthly Sales',plot_bgcolor='white',xaxis_rangeslider_visible=True)
st.plotly_chart(fig)
plot_raw_data_month(k)
def plot_raw_data_day(input:str):
if input == "Past":
df_daily= df_train.groupby(pd.Grouper(freq='D'))['Sales'].sum()
df_daily = pd.DataFrame(df_daily)
else:
df_daily = df_test.groupby(pd.Grouper(freq='D'))['Sales'].sum()
df_daily = pd.DataFrame(df_daily)
fig = go.Figure()
fig.add_trace(go.Scatter(x=df_daily.index, y=df_daily.Sales,name='Daily Sales' ))
fig.update_layout(title_text= 'Daily Sales',plot_bgcolor='white',xaxis_rangeslider_visible=True)
st.plotly_chart(fig)
plot_raw_data_day(k)
def plot_raw_yearly_sales_by_segment(input:str):
if input == "Past":
df_yearly_segment = df_train.groupby([pd.Grouper(freq='Y'), 'Segment'])['Sales'].sum().reset_index()
df_yearly_segment = pd.DataFrame(df_yearly_segment)
else:
df_yearly_segment = df_test.groupby([pd.Grouper(freq='Y'), 'Segment'])['Sales'].sum().reset_index()
df_yearly_segment = pd.DataFrame(df_yearly_segment)
color_scale = px.colors.sequential.Viridis
# create a dictionary that maps each unique value in the Segment column to a color from the color scheme
color_map = {segment: color_scale[i % len(color_scale)] for i, segment in enumerate(df_yearly_segment['Segment'].unique())}
# use the color_map dictionary to map the Segment values to colors
colors = df_yearly_segment['Segment'].map(color_map)
# create the plot using plotly.graph_objects
fig = go.Figure(data=go.Bar(x=df_yearly_segment['Order Date'], y=df_yearly_segment['Sales'], marker={'color': colors},hovertext=df_yearly_segment['Segment']))
fig.update_layout(title_text='Yearly Sales by Segment', plot_bgcolor='white')
st.plotly_chart(fig)
plot_raw_yearly_sales_by_segment(k)
def plot_raw_yearly_sales_by_region(input:str):
if input == "Past":
df_yearly_segment = df_train.groupby([pd.Grouper(freq='Y'), 'Region'])['Sales'].sum().reset_index()
df_yearly_segment = pd.DataFrame(df_yearly_segment)
else:
df_yearly_segment = df_test.groupby([pd.Grouper(freq='Y'), 'Region'])['Sales'].sum().reset_index()
df_yearly_segment = pd.DataFrame(df_yearly_segment)
color_scale = px.colors.sequential.Viridis
# create a dictionary that maps each unique value in the Segment column to a color from the color scheme
color_map = {segment: color_scale[i % len(color_scale)] for i, segment in enumerate(df_yearly_segment['Region'].unique())}
# use the color_map dictionary to map the Segment values to colors
colors = df_yearly_segment['Region'].map(color_map)
# create the plot using plotly.graph_objects
fig = go.Figure(data=go.Bar(x=df_yearly_segment['Order Date'], y=df_yearly_segment['Sales'], marker={'color': colors},hovertext=df_yearly_segment['Region']))
fig.update_layout(title_text='Yearly Sales by Region', plot_bgcolor='white')
st.plotly_chart(fig)
plot_raw_yearly_sales_by_region(k)
def plot_raw_yearly_sales_by_Category(input:str):
if input == "Past":
df_yearly_segment = df_train.groupby([pd.Grouper(freq='Y'), 'Category'])['Sales'].sum().reset_index()
else:
df_yearly_segment = df_test.groupby([pd.Grouper(freq='Y'), 'Category'])['Sales'].sum().reset_index()
df_yearly_segment = pd.DataFrame(df_yearly_segment)
color_scale = px.colors.sequential.Viridis
# create a dictionary that maps each unique value in the Segment column to a color from the color scheme
color_map = {segment: color_scale[i % len(color_scale)] for i, segment in enumerate(df_yearly_segment['Category'].unique())}
# use the color_map dictionary to map the Segment values to colors
colors = df_yearly_segment['Category'].map(color_map)
# create the plot using plotly.graph_objects
fig = go.Figure(data=go.Bar(x=df_yearly_segment['Order Date'], y=df_yearly_segment['Sales'], marker={'color': colors},hovertext=df_yearly_segment['Category']))
fig.update_layout(title_text='Yearly Sales by Category', plot_bgcolor='white')
st.plotly_chart(fig)
plot_raw_yearly_sales_by_Category(k)
def plot_raw_yearly_sales_by_State(input:str, number:int):
if input == "Past":
df_yearly_state = df_train.groupby([pd.Grouper(freq='Y'), 'State'])['Sales'].sum().reset_index()
else:
df_yearly_state = df_test.groupby([pd.Grouper(freq='Y'), 'State'])['Sales'].sum().reset_index()
df_yearly_state = pd.DataFrame(df_yearly_state)
color_scale = px.colors.sequential.Viridis
topN_states = df_yearly_state.groupby('State').sum().sort_values('Sales', ascending=False).head(number).index.tolist()
top_states_df = df_yearly_state[df_yearly_state['State'].isin(topN_states)]
# create a dictionary that maps each unique value in the State column to a color from the color scheme
color_map = {state: color_scale[i % len(color_scale)] for i, state in enumerate(top_states_df['State'].unique())}
# use the color_map dictionary to map the State values to colors
colors = top_states_df['State'].map(color_map)
# create the plot using plotly.graph_objects
fig = go.Figure(data=go.Bar(x=top_states_df['Order Date'], y=top_states_df['Sales'], marker={'color': colors},hovertext=top_states_df['State']))
fig.update_layout(title_text=f'Top {number} states with highest sales', plot_bgcolor='white')
st.plotly_chart(fig)
# initialize Streamlit slider for selecting number of subcategories to display
number_st = st.slider('Select the number of States', 1, 10, 3)
plot_raw_yearly_sales_by_State(k,number_st)
def plot_raw_yearly_sales_by_Sub_Cat(input:str, number:int):
if input == "Past":
df_yearly_state = df_train.groupby([pd.Grouper(freq='Y'), 'Sub-Category'])['Sales'].sum().reset_index()
else:
df_yearly_state = df_test.groupby([pd.Grouper(freq='Y'), 'Sub-Category'])['Sales'].sum().reset_index()
df_yearly_state = pd.DataFrame(df_yearly_state)
color_scale = px.colors.sequential.Viridis
topN_states = df_yearly_state.groupby('Sub-Category').sum().sort_values('Sales', ascending=False).head(number).index.tolist()
top_states_df = df_yearly_state[df_yearly_state['Sub-Category'].isin(topN_states)]
# create a dictionary that maps each unique value in the State column to a color from the color scheme
color_map = {state: color_scale[i % len(color_scale)] for i, state in enumerate(top_states_df['Sub-Category'].unique())}
# use the color_map dictionary to map the State values to colors
colors = top_states_df['Sub-Category'].map(color_map)
# create the plot using plotly.graph_objects
fig = go.Figure(data=go.Bar(x=top_states_df['Order Date'], y=top_states_df['Sub-Category'], marker={'color': colors},hovertext=top_states_df['Sub-Category']))
fig.update_layout(title_text=f'Top {number} sub categories with highest sales', plot_bgcolor='white')
st.plotly_chart(fig)
# initialize Streamlit slider for selecting number of subcategories to display
number_sub_cat = st.slider('Select the number of Sub-Category', 1, 10, 3)
plot_raw_yearly_sales_by_Sub_Cat(k,number_sub_cat)
def plot_raw_yearly_sales_by_Product(input:str,number:int):
if input == "Past":
df_yearly_product = df_train.groupby([pd.Grouper(freq='Y'), 'Product Name'])['Sales'].sum().reset_index()
else:
df_yearly_product = df_test.groupby([pd.Grouper(freq='Y'), 'Product Name'])['Sales'].sum().reset_index()
df_yearly_product = pd.DataFrame(df_yearly_product)
color_scale = px.colors.sequential.Viridis
topN_products = df_yearly_product.groupby('Product Name').sum().sort_values('Sales', ascending=False).head(number).index.tolist()
top_product_df = df_yearly_product[df_yearly_product['Product Name'].isin(topN_products)]
# create a dictionary that maps each unique value in the Product Name column to a color from the color scheme
color_map = {product: color_scale[i % len(color_scale)] for i, product in enumerate(top_product_df['Product Name'].unique())}
# use the color_map dictionary to map the Product Name values to colors
colors = top_product_df['Product Name'].map(color_map)
# create the plot using plotly.graph_objects
fig = go.Figure(data=go.Bar(x=top_product_df['Order Date'], y=top_product_df['Sales'], marker={'color': colors},hovertext=top_product_df['Product Name']))
fig.update_layout(title_text=f'Top {number} best-selling products', plot_bgcolor='white')
st.plotly_chart(fig)
# initialize Streamlit slider for selecting number of products to display
number_p = st.slider('Select the number of products to display', 1, 10, 3)
plot_raw_yearly_sales_by_Product(k,number_p)
def plot_raw_yearly_sales_by_City(input:str, number:int):
if input == "Past":
df_yearly_state = df_train.groupby([pd.Grouper(freq='Y'), 'City'])['Sales'].sum().reset_index()
else:
df_yearly_state = df_test.groupby([pd.Grouper(freq='Y'), 'City'])['Sales'].sum().reset_index()
df_yearly_state = pd.DataFrame(df_yearly_state)
color_scale = px.colors.sequential.Viridis
topN_states = df_yearly_state.groupby('City').sum().sort_values('Sales', ascending=False).head(number).index.tolist()
top_states_df = df_yearly_state[df_yearly_state['City'].isin(topN_states)]
# create a dictionary that maps each unique value in the State column to a color from the color scheme
color_map = {state: color_scale[i % len(color_scale)] for i, state in enumerate(top_states_df['City'].unique())}
# use the color_map dictionary to map the State values to colors
colors = top_states_df['City'].map(color_map)
# create the plot using plotly.graph_objects
fig = go.Figure(data=go.Bar(x=top_states_df['Order Date'], y=top_states_df['City'], marker={'color': colors},hovertext=top_states_df['City']))
fig.update_layout(title_text=f'Top {number} states with highest sales', plot_bgcolor='white')
st.plotly_chart(fig)
# initialize Streamlit slider for selecting number of subcategories to display
number_city = st.slider('Select the number of Cities', 1, 10, 3)
plot_raw_yearly_sales_by_City(k,number_city)
|