File size: 13,773 Bytes
0a9f351 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f038d23c4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f038d23c550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f038d23c5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f038d23c670>", "_build": "<function ActorCriticPolicy._build at 0x7f038d23c700>", "forward": "<function ActorCriticPolicy.forward at 0x7f038d23c790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f038d23c820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f038d23c8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f038d23c940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f038d23c9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f038d23ca60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f038d23caf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f038d3e33c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705301315155060306, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZyNT3sOeO5oiIcO1FvxDVi9ps6IsQ2ugAAgD8AAIA/ZoGSPCnwL7qfApI6K43UtAEMOTsm3Ky5AACAPwAAgD9N7Si9rmWxuiYdnznS7Ge2Xwv7OXNhYbUAAIA/AACAPzOir73Rnn0/SnCoOefUjr7BftG7DiIGugAAAAAAAAAAZuOwvUPGPz1X+CM9hoFsvo3cfbws8oM9AAAAAAAAAADmz489jw4CuusRfTkkg0Q0J1tUu62qkrgAAIA/AACAP2bWuLspHA26+PfvOo9UPjY73wc7zwULugAAgD8AAIA/zbS3u4Wz67mCnZe60AIOtkBatLommrI5AACAPwAAgD/zPCY++A+SP6KpBz0KsqC+9Cc9Ph1FV70AAAAAAAAAAE3Zwz17Lqi6o0/fOSSGUbZfJEE6zoX/uAAAgD8AAIA/AEBuusPVZboCWNY6HLHENQzzMjs+zvq5AACAPwAAgD9mWp69KchFuhadojv3j7M2Ajf2ORdZrzUAAIA/AACAPybmez7XF1o/hzkevucUk77QY4U9uPENvgAAAAAAAAAAc7KqPVz/abqKij45WVy/NKzWdTsDHFu4AACAPwAAgD9mnOS8WNqFPb3v0z0CkMu9xmtbPDZ2LD0AAAAAAAAAAJqKrTyPWky6CrHWOAcKODS7FQk7ktf0twAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWeIK2KEWaMAWyUTegDjAF0lEdAl516oESuhnV9lChoBkdAZDdAnDziCWgHTegDaAhHQJehnuy/sVt1fZQoaAZHQGSb4vvjOs1oB03oA2gIR0CXpcJ2+wkgdX2UKGgGR0BnAi06YE4eaAdN6ANoCEdAl6u9AcDKYHV9lChoBkdAYT1o7muDBmgHTegDaAhHQJewSI+GGmF1fZQoaAZHQGK1rFXJYDFoB03oA2gIR0CXscRq46OpdX2UKGgGR0BlCifvnbItaAdN6ANoCEdAl7bNfTkQw3V9lChoBkdAYZ48scyWRmgHTegDaAhHQJe9Sh8IAwR1fZQoaAZHQGH3tX5nDixoB03oA2gIR0CXwDsGxD9gdX2UKGgGR0BgKmKyfL9uaAdN6ANoCEdAl8BcejmCAnV9lChoBkdAYhLZZB9kSWgHTegDaAhHQJfB++dsi0R1fZQoaAZHQGAeRzijtXxoB03oA2gIR0CXxa6vaDf4dX2UKGgGR0BeHG0qpcX4aAdN6ANoCEdAl96CYTj//HV9lChoBkdAZBE8wHqu82gHTegDaAhHQJfeuvkili11fZQoaAZHQGKPOq3mV7hoB03oA2gIR0CX58pm29csdX2UKGgGR0BmOhtgrpaBaAdN6ANoCEdAl+0lqrR0EHV9lChoBkdAWcUgQpWmxmgHTegDaAhHQJfxVrVOKwZ1fZQoaAZHQGOofUnXumdoB03oA2gIR0CX9NVTrE9/dX2UKGgGR0BezeOjqOcUaAdN6ANoCEdAl/iCCBf8dnV9lChoBkdAYYd9qDbrT2gHTegDaAhHQJf951klNUR1fZQoaAZHQGOK/EfkmyBoB03oA2gIR0CYAiWu5jH5dX2UKGgGR0BbWojv/io9aAdN6ANoCEdAmANv24/eL3V9lChoBkdAZM0X40uUU2gHTegDaAhHQJgG9RR/EwZ1fZQoaAZHQGGyxmTTvy9oB03oA2gIR0CYC+HB1s+FdX2UKGgGR0Bi1qZtvXK9aAdN6ANoCEdAmA7h2wFC9nV9lChoBkdAY5RNke6qbWgHTegDaAhHQJgPAj9n9Nx1fZQoaAZHQGPanGKhtchoB03oA2gIR0CYELnYQJ5WdX2UKGgGR0A1vGJvYODraAdNGQFoCEdAmBNFuaWonHV9lChoBkdAZRVIJZ4fOmgHTegDaAhHQJgUruXu3MJ1fZQoaAZHQGFfs6q814xoB03oA2gIR0CYMUX+2mYTdX2UKGgGR0BjOv/zasZHaAdN6ANoCEdAmDGPQWvbGnV9lChoBkdAYyaMo+fRNWgHTegDaAhHQJg7Qg9vCMx1fZQoaAZHQGOhkJKJ2uBoB03oA2gIR0CYP/iR4hUzdX2UKGgGR0BimXjU/fO2aAdN6ANoCEdAmEOpjDsMRnV9lChoBkdAZMIYa5wwTWgHTegDaAhHQJhHe+K0lZ51fZQoaAZHQGWKVe8f3exoB03oA2gIR0CYS0pIMBp6dX2UKGgGR0Bg7KLEUCaJaAdN6ANoCEdAmFKTxLCemXV9lChoBkdAZZ+Nc4YJmmgHTegDaAhHQJhZCWzF+/h1fZQoaAZHQGMJqd6LOzJoB03oA2gIR0CYXHHvMKTjdX2UKGgGR0BiaSrHU+cIaAdN6ANoCEdAmGEeJxeb/nV9lChoBkdAZDmQPI4lyGgHTegDaAhHQJhkCROk+HJ1fZQoaAZHQGKJgmJFb3ZoB03oA2gIR0CYZCYxcmjTdX2UKGgGR0BlyOszVMEiaAdN6ANoCEdAmGWvZVXFLnV9lChoBkdAYdOOpbUwz2gHTegDaAhHQJhn8sGxD9h1fZQoaAZHQGWWY4hllK9oB03oA2gIR0CYaSOuq3mWdX2UKGgGR0A9GM8ox59maAdNHwFoCEdAmHA/Tw2ETXV9lChoBkdAZez27FsHjmgHTegDaAhHQJhwoYZVGTd1fZQoaAZHQGJ3tF8XvYxoB03oA2gIR0CYcNinYQJ5dX2UKGgGR0BDoI73fyf+aAdNCQFoCEdAmIkeUyHmBHV9lChoBkdAYiXaHsTnJWgHTegDaAhHQJiMgSyt3fR1fZQoaAZHQGjTiJoCdSVoB03oA2gIR0CYkC+RoysTdX2UKGgGR0BmYRIQOFxoaAdN6ANoCEdAmJMbl/6O53V9lChoBkdAZU4BpYcNpmgHTegDaAhHQJiWb6nBLwp1fZQoaAZHQGC24y44Ia9oB03oA2gIR0CYmfMDOkckdX2UKGgGR0BCx5N47ihnaAdL9WgIR0CYmhaHKwIMdX2UKGgGR0BgkYaJhvzfaAdN6ANoCEdAmJ7tkJ8fFXV9lChoBkdAZWNWeYlY2mgHTegDaAhHQJij+uW8h9t1fZQoaAZHQGaeuyu6mO5oB03oA2gIR0CYp3R3u/lAdX2UKGgGR0Bt9hQemvW6aAdNgANoCEdAmKjnrUsnRnV9lChoBkdAXMULeANG3GgHTegDaAhHQJivA6/7BO51fZQoaAZHQGNLgeA/cFhoB03oA2gIR0CYsOLZSNwSdX2UKGgGR0BQGcfJV81GaAdL12gIR0CYtPNR3u/ldX2UKGgGR0Bk4WuJUHY6aAdN6ANoCEdAmLXwG4ZuRHV9lChoBkdAXO0wDeTFEWgHTegDaAhHQJjAWY+jdpJ1fZQoaAZHQGY7aaTfR/poB03oA2gIR0CYwMMH8jzJdX2UKGgGR0Bef2WyC4BnaAdN6ANoCEdAmMD8t9QXRHV9lChoBkdAYQxjAi3XqmgHTegDaAhHQJjXEFUyYXx1fZQoaAZHQGQDhvitJWhoB03oA2gIR0CY3lv863iJdX2UKGgGR0BiIXyup0fYaAdN6ANoCEdAmOHA3gk1M3V9lChoBkdAYtJu3trsSmgHTegDaAhHQJjlY3tKIzp1fZQoaAZHQElqfh/Aj6hoB00HAWgIR0CY517pV0cPdX2UKGgGR0BnkpppN9H+aAdN6ANoCEdAmOoFoxpL3HV9lChoBkdAXwk0sOG0u2gHTegDaAhHQJjqLdi2Dxt1fZQoaAZHQGUaQwCbMHNoB03oA2gIR0CY8Dc/+sHTdX2UKGgGR0Bh4zfDUExJaAdN6ANoCEdAmPTmiDdxhnV9lChoBkdASKgEdNnGsGgHS/9oCEdAmPlS08eS0XV9lChoBkdAZXzMY/FBIGgHTegDaAhHQJj5YY/FBIF1fZQoaAZHQGDcn2AXl8xoB03oA2gIR0CY/yZE2HcldX2UKGgGR0Bb2GD6Fds0aAdN6ANoCEdAmQD6mCROlHV9lChoBkdAX0oSXdCVr2gHTegDaAhHQJkEJ2JSBLB1fZQoaAZHQGUCODJ2dNFoB03oA2gIR0CZBNSde6ZqdX2UKGgGR0BlITPMSsbOaAdN6ANoCEdAmQxgXZXdTHV9lChoBkdAYSauFpPAPGgHTegDaAhHQJkMxegL7XR1fZQoaAZHQGA9Ng8bJfZoB03oA2gIR0CZDPqPOpsHdX2UKGgGR0BhJg/mknCwaAdN6ANoCEdAmSyuN96Tn3V9lChoBkdAY/7A/LTx5WgHTegDaAhHQJkwVoK2KEZ1fZQoaAZHQF6VMHbAUL5oB03oA2gIR0CZNCgkC3gDdX2UKGgGR0Bh571wo9cKaAdN6ANoCEdAmTXDguRLb3V9lChoBkdAZT29qUNayWgHTegDaAhHQJk34rUb1h91fZQoaAZHQGPlX6AOJ+FoB03oA2gIR0CZPS1cdHUddX2UKGgGR0BirU5yU9pzaAdN6ANoCEdAmUKa0x/NJXV9lChoBkdAZh9t/nW8RWgHTegDaAhHQJlHkvK2a2F1fZQoaAZHQGRFFOwgTytoB03oA2gIR0CZR6JYDDCQdX2UKGgGR0BesZPykKu0aAdN6ANoCEdAmU686FM7EHV9lChoBkdAYFl0se4kNWgHTegDaAhHQJlRbZ26kIp1fZQoaAZHQGN7OxB3RohoB03oA2gIR0CZVf9RrJr+dX2UKGgGR0BixDxd6cAjaAdN6ANoCEdAmVb5bILgGnV9lChoBkdAYaSFGG21D2gHTegDaAhHQJlfVHlOoHd1fZQoaAZHQGAsKLsKLKpoB03oA2gIR0CZX76jFhoedX2UKGgGR0BjfOPT5O8DaAdN6ANoCEdAmV/6BRQ793VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |