File size: 1,937 Bytes
39ab9ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: indobenchmark/indobert-base-p2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: topic_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# topic_model

This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0145
- Accuracy: 0.9984

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 308  | 0.0315          | 0.9919   |
| 0.1039        | 2.0   | 616  | 0.0117          | 0.9984   |
| 0.1039        | 3.0   | 924  | 0.0147          | 0.9984   |
| 0.0047        | 4.0   | 1232 | 0.0223          | 0.9968   |
| 0.0002        | 5.0   | 1540 | 0.0138          | 0.9984   |
| 0.0002        | 6.0   | 1848 | 0.0140          | 0.9984   |
| 0.0001        | 7.0   | 2156 | 0.0142          | 0.9984   |
| 0.0001        | 8.0   | 2464 | 0.0144          | 0.9984   |
| 0.0001        | 9.0   | 2772 | 0.0145          | 0.9984   |
| 0.0001        | 10.0  | 3080 | 0.0145          | 0.9984   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0