koneksi_model / README.md
Dhanang's picture
End of training
d56ed32 verified
|
raw
history blame
2.38 kB
metadata
license: mit
base_model: indobenchmark/indobert-base-p2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: koneksi_model
    results: []

koneksi_model

This model is a fine-tuned version of indobenchmark/indobert-base-p2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4885
  • Accuracy: 0.8177
  • F1: 0.8087
  • Precision: 0.8916
  • Recall: 0.74

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 96 0.4936 0.7760 0.7817 0.7938 0.77
No log 2.0 192 0.4885 0.8177 0.8087 0.8916 0.74
No log 3.0 288 0.6119 0.7552 0.7662 0.7624 0.77
No log 4.0 384 1.0256 0.7552 0.7314 0.8533 0.64
No log 5.0 480 1.2790 0.7604 0.7629 0.7872 0.74
0.2515 6.0 576 1.3453 0.7656 0.7716 0.7835 0.76
0.2515 7.0 672 1.4966 0.7708 0.7864 0.7642 0.81
0.2515 8.0 768 1.4197 0.7708 0.7660 0.8182 0.72
0.2515 9.0 864 1.5297 0.7760 0.7861 0.7822 0.79
0.2515 10.0 960 1.5265 0.7708 0.78 0.78 0.78

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0