File size: 5,283 Bytes
36c95ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
from torch.autograd import gradcheck

import kornia
import kornia.testing as utils  # test utils
from kornia.testing import assert_close


class TestNMS2d:
    def test_shape(self, device):
        inp = torch.ones(1, 3, 4, 4, device=device)
        nms = kornia.geometry.subpix.NonMaximaSuppression2d((3, 3)).to(device)
        assert nms(inp).shape == inp.shape

    def test_shape_batch(self, device):
        inp = torch.ones(4, 3, 4, 4, device=device)
        nms = kornia.geometry.subpix.NonMaximaSuppression2d((3, 3)).to(device)
        assert nms(inp).shape == inp.shape

    def test_nms(self, device):
        inp = torch.tensor(
            [
                [
                    [
                        [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                        [0.0, 0.1, 1.0, 0.0, 1.0, 1.0, 0.0],
                        [0.0, 0.7, 1.1, 0.0, 1.0, 2.0, 0.0],
                        [0.0, 0.8, 1.0, 0.0, 1.0, 1.0, 0.0],
                    ]
                ]
            ],
            device=device,
        ).float()

        expected = torch.tensor(
            [
                [
                    [
                        [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                        [0.0, 0, 0, 0.0, 0, 0.0, 0.0],
                        [0.0, 0, 1.1, 0.0, 0.0, 2.0, 0.0],
                        [0.0, 0, 0, 0.0, 0.0, 0.0, 0.0],
                    ]
                ]
            ],
            device=device,
        ).float()
        nms = kornia.geometry.subpix.NonMaximaSuppression2d((3, 3)).to(device)
        scores = nms(inp)
        assert_close(scores, expected, atol=1e-4, rtol=1e-3)

    def test_gradcheck(self, device):
        batch_size, channels, height, width = 1, 2, 5, 4
        img = torch.rand(batch_size, channels, height, width, device=device)
        img = utils.tensor_to_gradcheck_var(img)  # to var
        assert gradcheck(kornia.geometry.subpix.nms2d, (img, (3, 3)), raise_exception=True, nondet_tol=1e-4)


class TestNMS3d:
    def test_shape(self, device):
        inp = torch.ones(1, 1, 3, 4, 4, device=device)
        nms = kornia.geometry.subpix.NonMaximaSuppression3d((3, 3, 3)).to(device)
        assert nms(inp).shape == inp.shape

    def test_shape_batch(self, device):
        inp = torch.ones(4, 1, 3, 4, 4, device=device)
        nms = kornia.geometry.subpix.NonMaximaSuppression3d((3, 3, 3)).to(device)
        assert nms(inp).shape == inp.shape

    def test_nms(self, device):
        inp = torch.tensor(
            [
                [
                    [
                        [
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 1.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                        ],
                        [
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 1.0, 0.0, 0.0],
                            [0.0, 1.0, 2.0, 1.0, 0.0],
                            [0.0, 0.0, 1.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                        ],
                        [
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 1.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                        ],
                    ]
                ]
            ]
        ).to(device)

        expected = torch.tensor(
            [
                [
                    [
                        [
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                        ],
                        [
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 2.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                        ],
                        [
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 0.0],
                        ],
                    ]
                ]
            ]
        ).to(device)
        nms = kornia.geometry.subpix.NonMaximaSuppression3d((3, 3, 3)).to(device)
        scores = nms(inp)
        assert_close(scores, expected, atol=1e-4, rtol=1e-3)

    def test_gradcheck(self, device):
        batch_size, channels, depth, height, width = 1, 1, 4, 5, 4
        img = torch.rand(batch_size, channels, depth, height, width, device=device)
        img = utils.tensor_to_gradcheck_var(img)  # to var
        assert gradcheck(kornia.geometry.subpix.nms3d, (img, (3, 3, 3)), raise_exception=True, nondet_tol=1e-4)