File size: 2,667 Bytes
36c95ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import pytest
import torch
from torch.autograd import gradcheck
import kornia.testing as utils # test utils
from kornia.feature import HardNet, HardNet8
from kornia.testing import assert_close
class TestHardNet:
def test_shape(self, device):
inp = torch.ones(1, 1, 32, 32, device=device)
hardnet = HardNet().to(device)
hardnet.eval() # batchnorm with size 1 is not allowed in train mode
out = hardnet(inp)
assert out.shape == (1, 128)
def test_shape_batch(self, device):
inp = torch.ones(16, 1, 32, 32, device=device)
hardnet = HardNet().to(device)
out = hardnet(inp)
assert out.shape == (16, 128)
@pytest.mark.skip("jacobian not well computed")
def test_gradcheck(self, device):
patches = torch.rand(2, 1, 32, 32, device=device)
patches = utils.tensor_to_gradcheck_var(patches) # to var
hardnet = HardNet().to(patches.device, patches.dtype)
assert gradcheck(hardnet, (patches,), eps=1e-4, atol=1e-4, raise_exception=True)
@pytest.mark.jit
def test_jit(self, device, dtype):
B, C, H, W = 2, 1, 32, 32
patches = torch.ones(B, C, H, W, device=device, dtype=dtype)
model = HardNet().to(patches.device, patches.dtype).eval()
model_jit = torch.jit.script(HardNet().to(patches.device, patches.dtype).eval())
assert_close(model(patches), model_jit(patches))
class TestHardNet8:
def test_shape(self, device):
inp = torch.ones(1, 1, 32, 32, device=device)
hardnet = HardNet8().to(device)
hardnet.eval() # batchnorm with size 1 is not allowed in train mode
out = hardnet(inp)
assert out.shape == (1, 128)
def test_shape_batch(self, device):
inp = torch.ones(16, 1, 32, 32, device=device)
hardnet = HardNet8().to(device)
out = hardnet(inp)
assert out.shape == (16, 128)
@pytest.mark.skip("jacobian not well computed")
def test_gradcheck(self, device):
patches = torch.rand(2, 1, 32, 32, device=device)
patches = utils.tensor_to_gradcheck_var(patches) # to var
hardnet = HardNet8().to(patches.device, patches.dtype)
assert gradcheck(hardnet, (patches,), eps=1e-4, atol=1e-4, raise_exception=True)
@pytest.mark.jit
def test_jit(self, device, dtype):
B, C, H, W = 2, 1, 32, 32
patches = torch.ones(B, C, H, W, device=device, dtype=dtype)
model = HardNet8().to(patches.device, patches.dtype).eval()
model_jit = torch.jit.script(HardNet8().to(patches.device, patches.dtype).eval())
assert_close(model(patches), model_jit(patches))
|