File size: 5,312 Bytes
36c95ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import pytest
import torch
from torch.autograd import gradcheck

import kornia
import kornia.testing as utils  # test utils
from kornia.testing import assert_close


class TestZCA:
    @pytest.mark.parametrize("unbiased", [True, False])
    def test_zca_unbiased(self, unbiased, device, dtype):

        data = torch.tensor([[0, 1], [1, 0], [-1, 0], [0, -1]], device=device, dtype=dtype)

        if unbiased:
            unbiased_val = 1.5
        else:
            unbiased_val = 2.0

        expected = torch.sqrt(unbiased_val * torch.abs(data)) * torch.sign(data)

        zca = kornia.enhance.ZCAWhitening(unbiased=unbiased).fit(data)

        actual = zca(data)

        tol_val: float = utils._get_precision(device, dtype)
        assert_close(actual, expected, rtol=tol_val, atol=tol_val)

    @pytest.mark.parametrize("dim", [0, 1])
    def test_dim_args(self, dim, device, dtype):
        if 'xla' in device.type:
            pytest.skip("buggy with XLA devices.")

        data = torch.tensor([[0, 1], [1, 0], [-1, 0], [0, -1]], device=device, dtype=dtype)

        if dim == 1:
            expected = torch.tensor(
                [
                    [-0.35360718, 0.35360718],
                    [0.35351562, -0.35351562],
                    [-0.35353088, 0.35353088],
                    [0.35353088, -0.35353088],
                ],
                device=device,
                dtype=dtype,
            )
        elif dim == 0:
            expected = torch.tensor(
                [[0.0, 1.2247448], [1.2247448, 0.0], [-1.2247448, 0.0], [0.0, -1.2247448]], device=device, dtype=dtype
            )

        zca = kornia.enhance.ZCAWhitening(dim=dim)
        actual = zca(data, True)

        tol_val: float = utils._get_precision(device, dtype)
        assert_close(actual, expected, rtol=tol_val, atol=tol_val)

    @pytest.mark.parametrize("input_shape,eps", [((15, 2, 2, 2), 1e-6), ((10, 4), 0.1), ((20, 3, 2, 2), 1e-3)])
    def test_identity(self, input_shape, eps, device, dtype):
        """Assert that data can be recovered by the inverse transform."""

        data = torch.randn(*input_shape, device=device, dtype=dtype)

        zca = kornia.enhance.ZCAWhitening(compute_inv=True, eps=eps).fit(data)

        data_w = zca(data)

        data_hat = zca.inverse_transform(data_w)

        tol_val: float = utils._get_precision_by_name(device, 'xla', 1e-1, 1e-4)
        assert_close(data, data_hat, rtol=tol_val, atol=tol_val)

    def test_grad_zca_individual_transforms(self, device, dtype):
        """Check if the gradients of the transforms are correct w.r.t to the input data."""

        data = torch.tensor([[2, 0], [0, 1], [-2, 0], [0, -1]], device=device, dtype=dtype)

        data = utils.tensor_to_gradcheck_var(data)

        def zca_T(x):
            return kornia.enhance.zca_mean(x)[0]

        def zca_mu(x):
            return kornia.enhance.zca_mean(x)[1]

        def zca_T_inv(x):
            return kornia.enhance.zca_mean(x, return_inverse=True)[2]

        assert gradcheck(zca_T, (data,), raise_exception=True)
        assert gradcheck(zca_mu, (data,), raise_exception=True)
        assert gradcheck(zca_T_inv, (data,), raise_exception=True)

    def test_grad_zca_with_fit(self, device, dtype):

        data = torch.tensor([[2, 0], [0, 1], [-2, 0], [0, -1]], device=device, dtype=dtype)

        data = utils.tensor_to_gradcheck_var(data)

        def zca_fit(x):
            zca = kornia.enhance.ZCAWhitening(detach_transforms=False)
            return zca(x, include_fit=True)

        assert gradcheck(zca_fit, (data,), raise_exception=True)

    def test_grad_detach_zca(self, device, dtype):

        data = torch.tensor([[1, 0], [0, 1], [-2, 0], [0, -1]], device=device, dtype=dtype)

        data = utils.tensor_to_gradcheck_var(data)
        zca = kornia.enhance.ZCAWhitening()

        zca.fit(data)

        assert gradcheck(zca, (data,), raise_exception=True)

    def test_not_fitted(self, device, dtype):

        with pytest.raises(RuntimeError):
            data = torch.rand(10, 2, device=device, dtype=dtype)

            zca = kornia.enhance.ZCAWhitening()
            zca(data)

    def test_not_fitted_inv(self, device, dtype):

        with pytest.raises(RuntimeError):
            data = torch.rand(10, 2, device=device, dtype=dtype)

            zca = kornia.enhance.ZCAWhitening()
            zca.inverse_transform(data)

    def test_jit(self, device, dtype):

        data = torch.rand(10, 3, 1, 2, device=device, dtype=dtype)
        zca = kornia.enhance.ZCAWhitening().fit(data)
        zca_jit = kornia.enhance.ZCAWhitening().fit(data)
        zca_jit = torch.jit.script(zca_jit)
        assert_close(zca_jit(data), zca(data))

    @pytest.mark.parametrize("unbiased", [True, False])
    def test_zca_whiten_func_unbiased(self, unbiased, device, dtype):

        data = torch.tensor([[0, 1], [1, 0], [-1, 0], [0, -1]], device=device, dtype=dtype)

        if unbiased:
            unbiased_val = 1.5
        else:
            unbiased_val = 2.0

        expected = torch.sqrt(unbiased_val * torch.abs(data)) * torch.sign(data)

        actual = kornia.enhance.zca_whiten(data, unbiased=unbiased)

        tol_val: float = utils._get_precision(device, dtype)
        assert_close(actual, expected, atol=tol_val, rtol=tol_val)