File size: 7,662 Bytes
36c95ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import cv2\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import os\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.nn.functional as F\n",
    "import torch.optim as optim\n",
    "import kornia as tgm"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Input Parameters\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "input_dir = 'data'\n",
    "src_name = 'img1.ppm'  # source image file\n",
    "dst_name = 'img2.ppm'  # destinatipn image file\n",
    "learning_rate = 1e-3\n",
    "num_iterations = 400  \n",
    "log_interval = 100  # print log every 200 iterations\n",
    "use_cuda = torch.cuda.is_available()\n",
    "device = torch.device('cuda' if use_cuda else 'cpu')\n",
    "print('Using ', device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def load_image(file_name):\n",
    "    \"\"\"Loads the image with OpenCV and converts to torch.Tensor                                      \n",
    "    \"\"\"\n",
    "    assert os.path.isfile(file_name), \"Invalid file {}\".format(file_name)\n",
    "\n",
    "    # load image with OpenCV                                                                         \n",
    "    img = cv2.imread(file_name, cv2.IMREAD_COLOR)\n",
    "\n",
    "    # convert image to torch tensor                                                                  \n",
    "    tensor = tgm.utils.image_to_tensor(img).float() / 255.\n",
    "    tensor = tensor.view(1, *tensor.shape)  # 1xCxHxW\n",
    "    return tensor, img"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Container to hold the homography as a trainable parameter"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "class MyHomography(nn.Module):\n",
    "    def __init__(self):\n",
    "        super(MyHomography, self).__init__()\n",
    "        self.homo = nn.Parameter(torch.Tensor(3, 3))\n",
    "        self.reset_parameters()\n",
    "\n",
    "    def reset_parameters(self):\n",
    "        torch.nn.init.eye_(self.homo)\n",
    "\n",
    "    def forward(self):\n",
    "        return torch.unsqueeze(self.homo, dim=0)  # 1x3x3  "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Read images and convert  to tensor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "img_src_t, img_src = load_image(os.path.join(input_dir, src_name))\n",
    "img_dst_t, img_dst = load_image(os.path.join(input_dir, dst_name))\n",
    "fig, (ax1, ax2) = plt.subplots(1, 2, sharey=True)\n",
    "fig.set_figheight(15)\n",
    "fig.set_figwidth(15)\n",
    "ax1.imshow(img_src[:,:,::-1])\n",
    "ax1.set_title('Source image')\n",
    "ax2.imshow(img_dst[:,:,::-1])\n",
    "ax2.set_title('Destination image')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Initialize the warper and the homography"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "height, width = img_src_t.shape[-2:]\n",
    "warper = tgm.HomographyWarper(height, width) #todo comment\n",
    "dst_homo_src = MyHomography().to(device)\n",
    "optimizer = optim.Adam(dst_homo_src.parameters(), lr=learning_rate)\n",
    "# send data to device\n",
    "img_src_t, img_dst_t = img_src_t.to(device), img_dst_t.to(device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def draw_rectangle(image, dst_homo_src):\n",
    "    height, width = image.shape[:2]\n",
    "    pts_src = torch.FloatTensor([[\n",
    "        [-1, -1],  # top-left\n",
    "        [1, -1],  # bottom-left\n",
    "        [1, 1],  # bottom-right\n",
    "        [-1, 1],  # top-right\n",
    "    ]]).to(dst_homo_src.device)\n",
    "    # transform points\n",
    "    pts_dst = tgm.transform_points(torch.inverse(dst_homo_src), pts_src)\n",
    "\n",
    "    def compute_factor(size):\n",
    "        return 1.0 * size / 2\n",
    "\n",
    "    def convert_coordinates_to_pixel(coordinates, factor):\n",
    "        return factor * (coordinates + 1.0)\n",
    "    # compute convertion factor\n",
    "    x_factor = compute_factor(width - 1)\n",
    "    y_factor = compute_factor(height - 1)\n",
    "    pts_dst = pts_dst.cpu().squeeze().detach().numpy()\n",
    "    pts_dst[..., 0] = convert_coordinates_to_pixel(\n",
    "        pts_dst[..., 0], x_factor)\n",
    "    pts_dst[..., 1] = convert_coordinates_to_pixel(\n",
    "        pts_dst[..., 1], y_factor)\n",
    "\n",
    "    # do the actual drawing\n",
    "    for i in range(4):\n",
    "        pt_i, pt_ii = tuple(pts_dst[i % 4]), tuple(pts_dst[(i + 1) % 4])\n",
    "        image = cv2.line(image, pt_i, pt_ii, (255, 0, 0), 3)\n",
    "        return image\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Main optimization loop\n",
    "\n",
    "This is the loss function to minimize the photometric error:\n",
    " $ L = \\sum |I_{ref} - \\omega(I_{dst}, H_{ref}^{dst}))|$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for iter_idx in range(num_iterations):\n",
    "    # warp the reference image to the destiny with current homography\n",
    "    img_src_to_dst = warper(img_src_t, dst_homo_src())\n",
    "\n",
    "    # compute the photometric loss\n",
    "    loss = F.l1_loss(img_src_to_dst, img_dst_t, reduction='none')\n",
    "\n",
    "    # propagate the error just for a fixed window\n",
    "    w_size = 100  # window size\n",
    "    h_2, w_2 = height // 2, width // 2\n",
    "    loss = loss[..., h_2 - w_size:h_2 + w_size, w_2 - w_size:w_2 + w_size]\n",
    "    loss = torch.mean(loss)\n",
    "\n",
    "    # compute gradient and update optimizer parameters\n",
    "    optimizer.zero_grad()\n",
    "    loss.backward()\n",
    "    optimizer.step()\n",
    "\n",
    "    if iter_idx % log_interval == 0 or iter_idx == num_iterations-1:\n",
    "        print('Train iteration: {}/{}\\tLoss: {:.6}'.format(\n",
    "        iter_idx, num_iterations, loss.item()))\n",
    "        # merge warped and target image for visualization\n",
    "        img_src_to_dst = warper(img_src_t, dst_homo_src())\n",
    "        img_vis = 255. * 0.5 * (img_src_to_dst + img_dst_t)\n",
    "        img_vis_np = tgm.utils.tensor_to_image(img_vis[0, ...])\n",
    "        image_draw = draw_rectangle(img_vis_np, dst_homo_src())\n",
    "        plt.imshow(image_draw.astype('uint')[:,:,::-1])\n",
    "        plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}