File size: 2,165 Bytes
fa9ae38
 
 
 
 
04988e0
 
fa9ae38
 
 
 
04988e0
 
 
 
 
 
 
 
 
 
 
 
fa9ae38
 
 
 
 
 
 
04988e0
fa9ae38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- DewiBrynJones/commonvoice_18_0_cy
metrics:
- wer
model-index:
- name: whisper-large-v3-ft-cv-cy-train-all
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: DewiBrynJones/commonvoice_18_0_cy default
      type: DewiBrynJones/commonvoice_18_0_cy
      args: default
    metrics:
    - name: Wer
      type: wer
      value: 0.18173684838363355
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-ft-cv-cy-train-all

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the DewiBrynJones/commonvoice_18_0_cy default dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3638
- Wer: 0.1817

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.1429        | 1.9455 | 1000 | 0.2754          | 0.2208 |
| 0.0232        | 3.8911 | 2000 | 0.2916          | 0.1991 |
| 0.0046        | 5.8366 | 3000 | 0.3219          | 0.1878 |
| 0.0009        | 7.7821 | 4000 | 0.3454          | 0.1832 |
| 0.0004        | 9.7276 | 5000 | 0.3638          | 0.1817 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1