File size: 2,508 Bytes
659b86f
 
 
 
9a3f429
 
659b86f
 
 
 
 
 
 
 
 
 
 
 
 
9a3f429
659b86f
f5d11fc
 
659b86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac86de4
659b86f
 
 
 
ac86de4
 
659b86f
 
 
 
 
 
f5d11fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
659b86f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
base_model: DewiBrynJones/wav2vec2-xlsr-53-ft-btb-ccv-cy
tags:
- automatic-speech-recognition
- DewiBrynJones/banc-trawsgrifiadau-bangor-clean
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-btb-ccv-ft-btb-cy
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-btb-ccv-ft-btb-cy

This model is a fine-tuned version of [DewiBrynJones/wav2vec2-xlsr-53-ft-btb-ccv-cy](https://huggingface.co/DewiBrynJones/wav2vec2-xlsr-53-ft-btb-ccv-cy) on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN - DEFAULT dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4314
- Wer: 0.3285

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- training_steps: 3000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log        | 0.1139 | 200  | 0.7148          | 0.4603 |
| No log        | 0.2278 | 400  | 0.6810          | 0.4795 |
| 1.4735        | 0.3417 | 600  | 0.6035          | 0.4486 |
| 1.4735        | 0.4556 | 800  | 0.6223          | 0.5105 |
| 0.7681        | 0.5695 | 1000 | 0.5656          | 0.4336 |
| 0.7681        | 0.6834 | 1200 | 0.5275          | 0.4008 |
| 0.7681        | 0.7973 | 1400 | 0.5284          | 0.4028 |
| 0.7159        | 0.9112 | 1600 | 0.4990          | 0.3914 |
| 0.7159        | 1.0251 | 1800 | 0.4855          | 0.3730 |
| 0.6203        | 1.1390 | 2000 | 0.4740          | 0.3623 |
| 0.6203        | 1.2528 | 2200 | 0.4589          | 0.3536 |
| 0.6203        | 1.3667 | 2400 | 0.4539          | 0.3407 |
| 0.5447        | 1.4806 | 2600 | 0.4410          | 0.3357 |
| 0.5447        | 1.5945 | 2800 | 0.4347          | 0.3293 |
| 0.5392        | 1.7084 | 3000 | 0.4314          | 0.3285 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1