File size: 32,744 Bytes
73964a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 21,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "H-2L-S6b4ukm",
        "outputId": "12789315-f584-4d98-afd4-2bd35d0453d9"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.35.2)\n",
            "Requirement already satisfied: datasets in /usr/local/lib/python3.10/dist-packages (2.15.0)\n",
            "Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.10/dist-packages (0.19.4)\n",
            "Requirement already satisfied: sentence-transformers in /usr/local/lib/python3.10/dist-packages (2.2.2)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.13.1)\n",
            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.23.5)\n",
            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.2)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)\n",
            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2023.6.3)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.31.0)\n",
            "Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.15.0)\n",
            "Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.1)\n",
            "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.66.1)\n",
            "Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (10.0.1)\n",
            "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n",
            "Requirement already satisfied: dill<0.3.8,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.3.7)\n",
            "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n",
            "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets) (3.4.1)\n",
            "Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from datasets) (0.70.15)\n",
            "Requirement already satisfied: fsspec[http]<=2023.10.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n",
            "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.1)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (4.5.0)\n",
            "Requirement already satisfied: torch>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (2.1.0+cu121)\n",
            "Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.16.0+cu121)\n",
            "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.2.2)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.11.4)\n",
            "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (3.8.1)\n",
            "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.1.99)\n",
            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.1.0)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.4)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.0)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
            "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.6)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.11.17)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (1.12)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.2.1)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.1.2)\n",
            "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (2.1.0)\n",
            "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (8.1.7)\n",
            "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (1.3.2)\n",
            "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.3.post1)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence-transformers) (3.2.0)\n",
            "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision->sentence-transformers) (9.4.0)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.6.0->sentence-transformers) (2.1.3)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.6.0->sentence-transformers) (1.3.0)\n"
          ]
        }
      ],
      "source": [
        "pip install transformers datasets huggingface_hub sentence-transformers"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import re\n",
        "import nltk\n",
        "from nltk.corpus import stopwords\n",
        "import torch\n",
        "from torch.utils.data import DataLoader, TensorDataset\n",
        "from transformers import AutoTokenizer, AutoModelForMaskedLM, AdamW\n",
        "import pandas as pd\n",
        "from tqdm import tqdm"
      ],
      "metadata": {
        "id": "Jk533_F14yV8"
      },
      "execution_count": 22,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Load your unlabeled dataset\n",
        "resumes = pd.read_csv('/content/resumes6000.csv')"
      ],
      "metadata": {
        "id": "IR-KIxHd5iyu"
      },
      "execution_count": 23,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "resumes.head(5)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 206
        },
        "id": "Y0sgNBwr5mzH",
        "outputId": "9728d843-eef7-4719-c9ed-418155127788"
      },
      "execution_count": 24,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "                                             Resumes\n",
              "0  Global Sales Administrator Biamp Systems Globa...\n",
              "1  Python Developer - Sprint  8 years of experien...\n",
              "2   IT Project Manager - Scrum Master of Digital ...\n",
              "3  UI Front End Developer UI <span class=\"hl\">Fro...\n",
              "4  IT Security Analyst Camp Hill, PA Work Experie..."
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-4103e9a9-d2f4-4f6d-a97a-5a5ae9a6a217\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>Resumes</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>Global Sales Administrator Biamp Systems Globa...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Python Developer - Sprint  8 years of experien...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>IT Project Manager - Scrum Master of Digital ...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>UI Front End Developer UI &lt;span class=\"hl\"&gt;Fro...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>IT Security Analyst Camp Hill, PA Work Experie...</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-4103e9a9-d2f4-4f6d-a97a-5a5ae9a6a217')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-4103e9a9-d2f4-4f6d-a97a-5a5ae9a6a217 button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-4103e9a9-d2f4-4f6d-a97a-5a5ae9a6a217');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-a376dc72-fa58-4744-913c-c4534b40ab5d\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-a376dc72-fa58-4744-913c-c4534b40ab5d')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-a376dc72-fa58-4744-913c-c4534b40ab5d button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "\n",
              "    </div>\n",
              "  </div>\n"
            ]
          },
          "metadata": {},
          "execution_count": 24
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Define the function for cleaning text\n",
        "def clean_text(text):\n",
        "    return re.sub(r\"<span class=\\\"hl\\\">(.*?)</span>\", r\"\\1\", text)\n",
        "# Apply the function to the entire column\n",
        "resumes['Resumes'] = resumes['Resumes'].apply(clean_text)"
      ],
      "metadata": {
        "id": "MrCrvWv65nAw"
      },
      "execution_count": 26,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        " import nltk\n",
        " nltk.download('punkt')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "aUdNZquW4yXo",
        "outputId": "254067bd-9b4e-4e98-b8a0-9c661e6955f3"
      },
      "execution_count": 27,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "[nltk_data] Downloading package punkt to /root/nltk_data...\n",
            "[nltk_data]   Package punkt is already up-to-date!\n"
          ]
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "True"
            ]
          },
          "metadata": {},
          "execution_count": 27
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import nltk\n",
        "nltk.download('stopwords')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "09C8uhGu51Vh",
        "outputId": "3cd7a9af-293f-4c3c-a073-92fe26c49bd5"
      },
      "execution_count": 28,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "[nltk_data] Downloading package stopwords to /root/nltk_data...\n",
            "[nltk_data]   Package stopwords is already up-to-date!\n"
          ]
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "True"
            ]
          },
          "metadata": {},
          "execution_count": 28
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Function for cleaning and preprocessing the resume\n",
        "def clean_resume(resume):\n",
        "    if isinstance(resume, str):\n",
        "        # Convert to lowercase\n",
        "        resume = resume.lower()\n",
        "\n",
        "        # Remove URLs, RT, cc, hashtags, mentions, non-ASCII characters, punctuation, and extra whitespace\n",
        "        resume = re.sub('http\\S+\\s*|RT|cc|#\\S+|@\\S+|[^\\x00-\\x7f]|[^\\w\\s]', ' ', resume)\n",
        "        resume = re.sub('\\s+', ' ', resume).strip()\n",
        "\n",
        "        # Tokenize the resume\n",
        "        tokens = nltk.word_tokenize(resume)\n",
        "\n",
        "        # Remove stopwords\n",
        "        stop_words = set(stopwords.words('english'))\n",
        "        tokens = [token for token in tokens if token.lower() not in stop_words]\n",
        "\n",
        "        # Join the tokens back into a sentence\n",
        "        preprocessed_resume = ' '.join(tokens)\n",
        "\n",
        "        return preprocessed_resume\n",
        "    else:\n",
        "        return ''\n",
        "# Applying the cleaning function to a Datasets\n",
        "resumes['Resumes']  = resumes['Resumes'].apply(lambda x: clean_resume(x))"
      ],
      "metadata": {
        "id": "TWyPQ63w51kN"
      },
      "execution_count": 30,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import pandas as pd\n",
        "from transformers import AutoTokenizer, AutoModelForMaskedLM, AdamW\n",
        "import torch\n",
        "from torch.utils.data import DataLoader, TensorDataset\n",
        "from tqdm import tqdm\n",
        "\n",
        "# Load the pre-trained model\n",
        "mpnet = \"sentence-transformers/all-mpnet-base-v2\"\n",
        "tokenizer = AutoTokenizer.from_pretrained(mpnet)\n",
        "pretrained_model = AutoModelForMaskedLM.from_pretrained(mpnet)\n",
        "\n",
        "# Assuming 'resumes' is a DataFrame with a column named 'Resumes'\n",
        "texts = resumes['Resumes'].tolist()\n",
        "\n",
        "# Tokenize and encode the unlabeled data\n",
        "encodings = tokenizer(texts, padding=True, truncation = True, return_tensors='pt')\n",
        "\n",
        "# Create a TensorDataset\n",
        "dataset = TensorDataset(encodings['input_ids'], encodings['attention_mask'])\n",
        "\n",
        "# Move the model to the appropriate device (CPU or GPU)\n",
        "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
        "pretrained_model.to(device)\n",
        "\n",
        "# Initialize the optimizer\n",
        "optimizer = AdamW(pretrained_model.parameters(), lr=2e-5)\n",
        "\n",
        "batch_size = 8\n",
        "epochs = 3\n",
        "import math\n",
        "\n",
        "# Experiment with different chunk sizes\n",
        "chunk_sizes_to_try = [200]  # Can add more sizes later\n",
        "\n",
        "for chunk_size in chunk_sizes_to_try:\n",
        "    for epoch in range(epochs):\n",
        "        tqdm_dataloader = tqdm(DataLoader(dataset, batch_size=batch_size, shuffle=True), desc=f'Epoch {epoch + 1}/{epochs}')\n",
        "\n",
        "        pretrained_model.train()\n",
        "        for batch in tqdm_dataloader:\n",
        "            input_ids, attention_mask = batch\n",
        "            input_ids, attention_mask = input_ids.to(device), attention_mask.to(device)\n",
        "\n",
        "            # Calculate number of chunks for current batch\n",
        "            sequence_length = input_ids.size(1)  # Get actual sequence length\n",
        "            num_chunks = math.ceil(sequence_length / chunk_size)\n",
        "\n",
        "            for i in range(num_chunks):\n",
        "                start_idx = i * chunk_size\n",
        "                end_idx = min((i + 1) * chunk_size, sequence_length)  # Handle final chunk\n",
        "\n",
        "                # Extract chunk data\n",
        "                input_ids_chunk = input_ids[:, start_idx:end_idx]\n",
        "                attention_mask_chunk = attention_mask[:, start_idx:end_idx]\n",
        "\n",
        "                # Forward pass\n",
        "                outputs = pretrained_model(\n",
        "                    input_ids_chunk, attention_mask=attention_mask_chunk, labels=input_ids_chunk.reshape(-1)\n",
        "                    )\n",
        "\n",
        "                # Calculate loss\n",
        "                loss = outputs.loss\n",
        "\n",
        "                # Backward pass and optimization\n",
        "                optimizer.zero_grad()\n",
        "                loss.backward()\n",
        "                optimizer.step()\n",
        "\n",
        "                # Update progress bar\n",
        "                tqdm_dataloader.set_postfix({'Loss': loss.item(), 'Chunk Size': chunk_size})"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "kypmxXhz4ybO",
        "outputId": "a142f965-498a-4f33-ffbb-028f88f27d51"
      },
      "execution_count": 43,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "Some weights of the model checkpoint at sentence-transformers/all-mpnet-base-v2 were not used when initializing MPNetForMaskedLM: ['pooler.dense.weight', 'pooler.dense.bias']\n",
            "- This IS expected if you are initializing MPNetForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
            "- This IS NOT expected if you are initializing MPNetForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
            "Some weights of MPNetForMaskedLM were not initialized from the model checkpoint at sentence-transformers/all-mpnet-base-v2 and are newly initialized: ['lm_head.dense.weight', 'lm_head.bias', 'lm_head.decoder.bias', 'lm_head.layer_norm.weight', 'lm_head.layer_norm.bias', 'lm_head.dense.bias']\n",
            "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
            "/usr/local/lib/python3.10/dist-packages/transformers/optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
            "  warnings.warn(\n",
            "Epoch 1/3: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 750/750 [11:46<00:00,  1.06it/s, Loss=0.057, Chunk Size=200]\n",
            "Epoch 2/3: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 750/750 [11:47<00:00,  1.06it/s, Loss=0.0571, Chunk Size=200]\n",
            "Epoch 3/3: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 750/750 [11:47<00:00,  1.06it/s, Loss=0.0464, Chunk Size=200]\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Save the fine-tuned model\n",
        "pretrained_model.save_pretrained('fine_tuned_mpnet')\n",
        "tokenizer.save_pretrained('fine_tuned_mpnet')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "U-mZPfa8Sipl",
        "outputId": "fc93a178-aaf4-415b-f8e2-bba93a832052"
      },
      "execution_count": 44,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "('fine_tuned_mpnet/tokenizer_config.json',\n",
              " 'fine_tuned_mpnet/special_tokens_map.json',\n",
              " 'fine_tuned_mpnet/vocab.txt',\n",
              " 'fine_tuned_mpnet/added_tokens.json',\n",
              " 'fine_tuned_mpnet/tokenizer.json')"
            ]
          },
          "metadata": {},
          "execution_count": 44
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "fnD7hsloTA1i"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "LEUEojrfTBB0"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}