File size: 4,722 Bytes
2571066 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import glob
import re
import shutil
import sys
import accelerate
import torch
from safetensors import safe_open
from configuration_glm4_shared_moe import Glm4SharedMoeConfig
from modeling_glm4_shared_moe import Glm4SharedMoeForCausalLM
from transformers.models.glm4_moe.configuration_glm4_moe import Glm4MoeConfig
input_model = sys.argv[1]
output_model_path = sys.argv[2]
auto_map = {
"AutoConfig": "configuration_glm4_shared_moe.Glm4SharedMoeConfig",
"AutoModel": "modeling_glm4_shared_moe.Glm4SharedMoeModel",
"AutoModelForCausalLM": "modeling_glm4_shared_moe.Glm4SharedMoeForCausalLM"
}
cfg_standard_moe = Glm4MoeConfig.from_pretrained(input_model)
cfg_shared_moe = Glm4SharedMoeConfig(
auto_map=auto_map,
vocab_size=cfg_standard_moe.vocab_size,
hidden_size=cfg_standard_moe.hidden_size,
intermediate_size=cfg_standard_moe.intermediate_size,
num_hidden_layers=cfg_standard_moe.num_hidden_layers,
num_attention_heads=cfg_standard_moe.num_attention_heads,
num_key_value_heads=cfg_standard_moe.num_key_value_heads,
hidden_act=cfg_standard_moe.hidden_act,
max_position_embeddings=cfg_standard_moe.max_position_embeddings,
initializer_range=cfg_standard_moe.initializer_range,
rms_norm_eps=cfg_standard_moe.rms_norm_eps,
use_cache=cfg_standard_moe.use_cache,
tie_word_embeddings=cfg_standard_moe.tie_word_embeddings,
rope_theta=cfg_standard_moe.rope_theta,
rope_scaling=cfg_standard_moe.rope_scaling,
attention_bias=cfg_standard_moe.attention_bias,
attention_dropout=cfg_standard_moe.attention_dropout,
moe_intermediate_size=cfg_standard_moe.moe_intermediate_size,
num_experts_per_tok=cfg_standard_moe.num_experts_per_tok,
n_routed_experts=cfg_standard_moe.n_routed_experts,
n_shared_experts=cfg_standard_moe.n_shared_experts,
norm_topk_prob=cfg_standard_moe.norm_topk_prob,
head_dim=cfg_standard_moe.head_dim,
pad_token_id=cfg_standard_moe.pad_token_id,
eos_token_id=cfg_standard_moe.eos_token_id,
routed_scaling_factor=cfg_standard_moe.routed_scaling_factor,
first_k_dense_replace=cfg_standard_moe.first_k_dense_replace,
num_nextn_predict_layers=cfg_standard_moe.num_nextn_predict_layers,
)
num_experts = cfg_standard_moe.n_routed_experts
with accelerate.init_empty_weights():
model_shared_moe = Glm4SharedMoeForCausalLM(cfg_shared_moe)
model_shared_moe = model_shared_moe.to(torch.bfloat16)
new_state_dict = {}
pattern = f"{input_model}/model-*-of-*.safetensors"
files = sorted(glob.glob(pattern))
if len(files) == 0:
raise FileNotFoundError
tensors = {}
for file_path in files:
print(f"processing {file_path}")
with safe_open(file_path, framework="pt", device="cpu") as f:
for key in f.keys():
tensor = f.get_tensor(key)
tensors[key] = tensor
for key in tensors:
try:
layer_num = int(re.search(r"\d+", key).group())
if layer_num >= cfg_standard_moe.num_hidden_layers:
continue
except:
pass
if "experts" not in key or "shared_experts" in key:
new_state_dict[key] = tensors[key]
elif "experts.0" in key:
layer_num = int(re.search(r"\d+", key).group())
new_state_dict[
f"model.layers.{layer_num}.mlp.moe_mlp.output_experts.weight"
] = torch.stack(
[
tensors[f"model.layers.{layer_num}.mlp.experts.{i}.down_proj.weight"]
for i in range(num_experts)
]
)
new_state_dict[f"model.layers.{layer_num}.mlp.moe_mlp.experts.weight"] = (
torch.stack(
[
torch.cat(
[
tensors[
f"model.layers.{layer_num}.mlp.experts.{i}.up_proj.weight"
],
tensors[
f"model.layers.{layer_num}.mlp.experts.{i}.gate_proj.weight"
],
],
dim=0,
)
for i in range(num_experts)
]
)
)
model_shared_moe.load_state_dict(new_state_dict, strict=True, assign=True)
model_shared_moe.save_pretrained(output_model_path)
cfg_shared_moe.save_pretrained(output_model_path)
shutil.copy(
"modeling_glm4_shared_moe.py",
output_model_path + "/" + "modeling_glm4_shared_moe.py",
)
shutil.copy(
"configuration_glm4_shared_moe.py",
output_model_path + "/" + "configuration_glm4_shared_moe.py",
)
for i in ["chat_template.jinja", "tokenizer_config.json", "tokenizer.json"]:
shutil.copy(input_model + "/" + i, output_model_path + "/" + i)
|